Citation: |
[1] |
E. L. Allgower and K. Georg, "Introduction to Numerical Continuation Methods," Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)], Classics in Applied Mathematics, 45, SIAM, Philadelphia, PA, 2003. |
[2] |
R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control," Oxford University Press, New York, Tokyo, 1991. |
[3] |
E. Beretta and D. Breda, An SEIR epidemic model with constant latency time and infectious period, Math. Biosci. Eng., 8 (2011), 931-952.doi: 10.3934/mbe.2011.8.931. |
[4] |
D. Breda, "Numerical Computation of Characteristic Roots for Delay Differential Equations," Ph.D thesis, Ph.D in Computational Mathematics, Università di Padova, 2004. |
[5] |
D. Breda, Nonautonomous delay differential equations in Hilbert spaces and Lyapunov exponents, Diff. Int. Equations, 23 (2010), 935-956. |
[6] |
D. Breda, C. Cusulin, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of age-structured population equations by pseudospectral differencing methods, J. Math. Biol., 54 (2007), 701-720.doi: 10.1007/s00285-006-0064-4. |
[7] |
D. Breda, M. Iannelli, S. Maset and R. Vermiglio, Stability analysis of the Gurtin-MacCamy model, SIAM J. Numer. Anal., 46 (2008), 980-995.doi: 10.1137/070685658. |
[8] |
D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482-495.doi: 10.1137/030601600. |
[9] |
D. Breda, S. Maset and R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions, Appl. Numer. Math., 56 (2006), 318-331.doi: 10.1016/j.apnum.2005.04.011. |
[10] |
D. Breda, S. Maset and R. Vermiglio, Numerical approximation of characteristic values of partial retarded functional differential equations, Numer. Math., 113 (2009), 181-242.doi: 10.1007/s00211-009-0233-7. |
[11] |
D. Breda, S. Maset and R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, 2012, to appear on SIAM J. Numer. Anal. |
[12] |
D. Breda, S. Maset and R. Vermiglio, Computing eigenvalues of Gurtin-MacCamy models with diffusion, IMA J. Numer. Anal., published online, 2011.doi: 10.1093/imanum/drr004. |
[13] |
D. Breda and D. Visetti, Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model, Math. Biosci., 235 (2012), 19-31.doi: 10.1016/j.mbs.2011.10.004. |
[14] |
C. Chicone and Y. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Mathematical Surveys and Monographs, 70, American Mathematical Society, Providence, RI, 1999. |
[15] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, "Delay Equations. Functional, Complex, and Nonlinear Analysis," American Mathematical Sciences, 110, Springer-Verlag, New York, 1995. |
[16] |
K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 1999. |
[17] |
A. Franceschetti, A. Pugliese and D. Breda, Multiple endemic states in age-structured SIR epidemic models, 2012, to appear on Math. Biosci. Eng. |
[18] |
W. J. F. Govaerts, "Numerical Methods for Bifurcations of Dynamical Equilibria," SIAM, Philadelphia, PA, 2000.doi: 10.1137/1.9780898719543. |
[19] |
D. Greenhalgh, Threshold and stability results for an epidemic model with an age-structured meeting rate, IMA J. Math. Appl. Med. Biol., 5 (1988), 81-100.doi: 10.1093/imammb/5.2.81. |
[20] |
M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics, Archiv. Rat. Mech. Anal., 54 (1974), 281-300.doi: 10.1007/BF00250793. |
[21] |
M. Iannelli, "Mathematical Theory of Age-Structured Population Dynamics," Applied Mathematics Monographs (C.N.R.), Giardini Editori e Stampatori, Pisa, Italy, 1994. |
[22] |
H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411-434.doi: 10.1007/BF00178326. |
[23] |
Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," Second edition, Applied Mathematical Sciences, 112, Springer-Verlag, New York, 1998. |
[24] |
S. Liu, E. Beretta and D. Breda, Predator-prey model of Beddington-DeAngelis type with maturation and gestation delays, Nonlinear Anal. Real World Appl., 11 (2010), 4072-4091.doi: 10.1016/j.nonrwa.2010.03.013. |
[25] |
A. Lyapunov, "Problém Géneral de la Stabilité du Mouvement," Annals of Mathematics Studies, 17, Princeton University Press, 1949. |
[26] |
R. M. May and R. M. Anderson, Endemic infections in growing populations, Mathematical Biosciences, 77 (1985), 141-156.doi: 10.1016/0025-5564(85)90093-8. |
[27] |
I. Mazzer, "Un Modello per la Dinamica di Più Popolazioni: Esistenza, Unicitàe Approssimazione Numerica della Soluzione," Master's thesis, University of Udine, (in italian), 2009. |
[28] |
L. N. Trefethen, "Spectral Methods in MATLAB," Software, Environment, and Tools, 10, SIAM, Philadelphia, PA, 2000. |
[29] |
J. H. Wilkinson, The perfidious polynomial, in "Studies in Numerical Analysis" (ed. G. H. Golub), Studies in Mathematics, 24, Mathematical Association of America, Washington, DC, (1984), 1-28. |