January  2012, 32(1): 27-40. doi: 10.3934/dcds.2012.32.27

Uniqueness of equilibrium states for some partially hyperbolic horseshoes

1. 

Instituto de Matemática - UFRJ, Av. Athos da Silveira Ramos 149, Cidade Universitária - Ilha do Fundão, P.O. Box 68530. Rio de Janeiro - RJ, Brazil, Brazil

Received  July 2010 Revised  May 2011 Published  September 2011

In this note, we consider a partially hyperbolic horseshoe and prove uniqueness of equilibrium states for a class of potentials. In particular we obtain that there exists a unique maximal entropy measure.
Citation: Alexander Arbieto, Luciano Prudente. Uniqueness of equilibrium states for some partially hyperbolic horseshoes. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 27-40. doi: 10.3934/dcds.2012.32.27
References:
[1]

J. Alves and V. Araújo, Random perturbations of non-uniformly expanding maps, Astérisque, 286 (2003), 25-62.  Google Scholar

[2]

J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398. doi: 10.1007/s002220000057.  Google Scholar

[3]

A. Arbieto, C. Matheus and K. Oliveira, Equilibrium states for random non-uniformly expanding maps, Nonlinearity, 17 (2004), 581-593. doi: 10.1088/0951-7715/17/2/013.  Google Scholar

[4]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. of Math., 115 (2000), 157-193. doi: 10.1007/BF02810585.  Google Scholar

[5]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.  Google Scholar

[6]

R. Bowen, Some systems with unique equilibrium states,, Math. Systems Theory, 8 (): 1974.   Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[8]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphism," Springer Lecture Notes in Math., 470, 1975.  Google Scholar

[9]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. doi: 10.1007/BF01389848.  Google Scholar

[10]

H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys., 168 (1995), 571-580. doi: 10.1007/BF02101844.  Google Scholar

[11]

H. Bruin and G. Keller, Equilibrium states for S-unimodal maps, Ergodic Theory Dynam. Systems, 18 (1998), 765-789. doi: 10.1017/S0143385798108337.  Google Scholar

[12]

H. Bruin and M. Todd, Equilibrium states for interval maps: The potential $-t log\|Df\|$, Ann. Sci. École Norm. Sup., 42 (2009), 559-600.  Google Scholar

[13]

J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states, Proc. Sympos. Pure Math., 69 (2001), 749-783.  Google Scholar

[14]

J. Buzzi, T. Fisher, M. Sambarino and C. Vásquez, Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems,, Ergodic Theory and Dynamical Systems, ().   Google Scholar

[15]

J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems, 23 (2003), 1383-1400. doi: 10.1017/S0143385703000087.  Google Scholar

[16]

L. J. Díaz and T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms, Discrete and Continuous Dynamical Systems, 29 (2011), 1419-1441.  Google Scholar

[17]

L. J. Díaz, V. Horita, M. Sambarino and I. Rios, Destroying horseshoes via heterodimensional cycles: Generating bifurcations inside homoclinic classes, Ergodic Theory and Dynamical Systems, 29 (2009), 433-474. doi: 10.1017/S0143385708080346.  Google Scholar

[18]

Haydn N.T.A. and D. Ruelle, Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Commun. Math. Phys., 148 (1992), 155-167. doi: 10.1007/BF02102369.  Google Scholar

[19]

F. Hofbauer, The topological entropy of a transformation $x\mapsto ax(1-x)$, Monatsh. Math., 90 (1980), 117-141. doi: 10.1007/BF01303262.  Google Scholar

[20]

G. Iommi and M. Todd, Natural equilibrium states for multimodal maps, Commun. Math. Phys., 300 (2010), 65-94. doi: 10.1007/s00220-010-1112-x.  Google Scholar

[21]

R. Israel, "Convexity in the Theory of Lattice Gases," Princeton University Press, 1979.  Google Scholar

[22]

G. Keller, Lifting measures to Markov extensions, Monatsh. Math., 108 (1989), 183-200.  Google Scholar

[23]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576. doi: 10.1112/jlms/s2-16.3.568.  Google Scholar

[24]

R. Leplaideur, K. Oliveira and I. Rios, Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes, Nonlinearity, 19 (2006), 2667-2694. doi: 10.1088/0951-7715/19/11/009.  Google Scholar

[25]

S. E. Newhouse, Continuity properties of entropy, Annals of Mathematics, 129 (1989), 215-235. doi: 10.2307/1971492.  Google Scholar

[26]

K. Oliveira, Equilibrium states for non-uniformly expanding maps, Ergodic Theory & Dynamical Systems, 23 (2003), 1891-1905. doi: 10.1017/S0143385703000257.  Google Scholar

[27]

Y. Pesin and S. Senti, Equilibrium measures for maps with inducing schemes, Journal of Modern Dynamics, 2 (2008), 397-430.  Google Scholar

[28]

V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Russian Math. Surveys, 22 (1967), 3-56.  Google Scholar

[29]

D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Co., Reading, Mass, 5, 1978.  Google Scholar

[30]

P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Annales de l Institut Henri Poincaré. Analyse non Linéaire, 27 (2010), 555-593.  Google Scholar

[31]

W. Cowieson and L. S. Young, SRB measures as zero-noise limits, Ergodic Theory Dynamic Systems, 25 (2005), 1115-1138. doi: 10.1017/S0143385704000604.  Google Scholar

show all references

References:
[1]

J. Alves and V. Araújo, Random perturbations of non-uniformly expanding maps, Astérisque, 286 (2003), 25-62.  Google Scholar

[2]

J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398. doi: 10.1007/s002220000057.  Google Scholar

[3]

A. Arbieto, C. Matheus and K. Oliveira, Equilibrium states for random non-uniformly expanding maps, Nonlinearity, 17 (2004), 581-593. doi: 10.1088/0951-7715/17/2/013.  Google Scholar

[4]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. of Math., 115 (2000), 157-193. doi: 10.1007/BF02810585.  Google Scholar

[5]

R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.  Google Scholar

[6]

R. Bowen, Some systems with unique equilibrium states,, Math. Systems Theory, 8 (): 1974.   Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414. doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[8]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphism," Springer Lecture Notes in Math., 470, 1975.  Google Scholar

[9]

R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202. doi: 10.1007/BF01389848.  Google Scholar

[10]

H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys., 168 (1995), 571-580. doi: 10.1007/BF02101844.  Google Scholar

[11]

H. Bruin and G. Keller, Equilibrium states for S-unimodal maps, Ergodic Theory Dynam. Systems, 18 (1998), 765-789. doi: 10.1017/S0143385798108337.  Google Scholar

[12]

H. Bruin and M. Todd, Equilibrium states for interval maps: The potential $-t log\|Df\|$, Ann. Sci. École Norm. Sup., 42 (2009), 559-600.  Google Scholar

[13]

J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states, Proc. Sympos. Pure Math., 69 (2001), 749-783.  Google Scholar

[14]

J. Buzzi, T. Fisher, M. Sambarino and C. Vásquez, Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems,, Ergodic Theory and Dynamical Systems, ().   Google Scholar

[15]

J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems, 23 (2003), 1383-1400. doi: 10.1017/S0143385703000087.  Google Scholar

[16]

L. J. Díaz and T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms, Discrete and Continuous Dynamical Systems, 29 (2011), 1419-1441.  Google Scholar

[17]

L. J. Díaz, V. Horita, M. Sambarino and I. Rios, Destroying horseshoes via heterodimensional cycles: Generating bifurcations inside homoclinic classes, Ergodic Theory and Dynamical Systems, 29 (2009), 433-474. doi: 10.1017/S0143385708080346.  Google Scholar

[18]

Haydn N.T.A. and D. Ruelle, Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Commun. Math. Phys., 148 (1992), 155-167. doi: 10.1007/BF02102369.  Google Scholar

[19]

F. Hofbauer, The topological entropy of a transformation $x\mapsto ax(1-x)$, Monatsh. Math., 90 (1980), 117-141. doi: 10.1007/BF01303262.  Google Scholar

[20]

G. Iommi and M. Todd, Natural equilibrium states for multimodal maps, Commun. Math. Phys., 300 (2010), 65-94. doi: 10.1007/s00220-010-1112-x.  Google Scholar

[21]

R. Israel, "Convexity in the Theory of Lattice Gases," Princeton University Press, 1979.  Google Scholar

[22]

G. Keller, Lifting measures to Markov extensions, Monatsh. Math., 108 (1989), 183-200.  Google Scholar

[23]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576. doi: 10.1112/jlms/s2-16.3.568.  Google Scholar

[24]

R. Leplaideur, K. Oliveira and I. Rios, Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes, Nonlinearity, 19 (2006), 2667-2694. doi: 10.1088/0951-7715/19/11/009.  Google Scholar

[25]

S. E. Newhouse, Continuity properties of entropy, Annals of Mathematics, 129 (1989), 215-235. doi: 10.2307/1971492.  Google Scholar

[26]

K. Oliveira, Equilibrium states for non-uniformly expanding maps, Ergodic Theory & Dynamical Systems, 23 (2003), 1891-1905. doi: 10.1017/S0143385703000257.  Google Scholar

[27]

Y. Pesin and S. Senti, Equilibrium measures for maps with inducing schemes, Journal of Modern Dynamics, 2 (2008), 397-430.  Google Scholar

[28]

V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Russian Math. Surveys, 22 (1967), 3-56.  Google Scholar

[29]

D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Co., Reading, Mass, 5, 1978.  Google Scholar

[30]

P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Annales de l Institut Henri Poincaré. Analyse non Linéaire, 27 (2010), 555-593.  Google Scholar

[31]

W. Cowieson and L. S. Young, SRB measures as zero-noise limits, Ergodic Theory Dynamic Systems, 25 (2005), 1115-1138. doi: 10.1017/S0143385704000604.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[3]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[4]

Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673

[5]

Vaughn Climenhaga, Yakov Pesin, Agnieszka Zelerowicz. Equilibrium measures for some partially hyperbolic systems. Journal of Modern Dynamics, 2020, 16: 155-205. doi: 10.3934/jmd.2020006

[6]

Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195

[7]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[8]

Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 371-386. doi: 10.3934/dcds.2007.17.371

[9]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[10]

Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789

[11]

Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4485-4513. doi: 10.3934/dcds.2021045

[12]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 215-234. doi: 10.3934/dcds.2008.22.215

[13]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[14]

Xinsheng Wang, Weisheng Wu, Yujun Zhu. Local unstable entropy and local unstable pressure for random partially hyperbolic dynamical systems. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 81-105. doi: 10.3934/dcds.2020004

[15]

Yun Yang. Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5133-5152. doi: 10.3934/dcds.2015.35.5133

[16]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[17]

Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593

[18]

Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061

[19]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[20]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]