Citation: |
[1] |
J. Alves and V. Araújo, Random perturbations of non-uniformly expanding maps, Astérisque, 286 (2003), 25-62. |
[2] |
J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.doi: 10.1007/s002220000057. |
[3] |
A. Arbieto, C. Matheus and K. Oliveira, Equilibrium states for random non-uniformly expanding maps, Nonlinearity, 17 (2004), 581-593.doi: 10.1088/0951-7715/17/2/013. |
[4] |
C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. of Math., 115 (2000), 157-193.doi: 10.1007/BF02810585. |
[5] |
R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397. |
[6] |
R. Bowen, Some systems with unique equilibrium states, Math. Systems Theory, 8 (1974-1975), 193-202. |
[7] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X. |
[8] |
R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphism," Springer Lecture Notes in Math., 470, 1975. |
[9] |
R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), 181-202.doi: 10.1007/BF01389848. |
[10] |
H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys., 168 (1995), 571-580.doi: 10.1007/BF02101844. |
[11] |
H. Bruin and G. Keller, Equilibrium states for S-unimodal maps, Ergodic Theory Dynam. Systems, 18 (1998), 765-789.doi: 10.1017/S0143385798108337. |
[12] |
H. Bruin and M. Todd, Equilibrium states for interval maps: The potential $-t log\|Df\|$, Ann. Sci. École Norm. Sup., 42 (2009), 559-600. |
[13] |
J. Buzzi, Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states, Proc. Sympos. Pure Math., 69 (2001), 749-783. |
[14] |
J. Buzzi, T. Fisher, M. Sambarino and C. Vásquez, Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems, Ergodic Theory and Dynamical Systems, to appear. |
[15] |
J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems, 23 (2003), 1383-1400.doi: 10.1017/S0143385703000087. |
[16] |
L. J. Díaz and T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms, Discrete and Continuous Dynamical Systems, 29 (2011), 1419-1441. |
[17] |
L. J. Díaz, V. Horita, M. Sambarino and I. Rios, Destroying horseshoes via heterodimensional cycles: Generating bifurcations inside homoclinic classes, Ergodic Theory and Dynamical Systems, 29 (2009), 433-474.doi: 10.1017/S0143385708080346. |
[18] |
Haydn N.T.A. and D. Ruelle, Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Commun. Math. Phys., 148 (1992), 155-167.doi: 10.1007/BF02102369. |
[19] |
F. Hofbauer, The topological entropy of a transformation $x\mapsto ax(1-x)$, Monatsh. Math., 90 (1980), 117-141.doi: 10.1007/BF01303262. |
[20] |
G. Iommi and M. Todd, Natural equilibrium states for multimodal maps, Commun. Math. Phys., 300 (2010), 65-94.doi: 10.1007/s00220-010-1112-x. |
[21] |
R. Israel, "Convexity in the Theory of Lattice Gases," Princeton University Press, 1979. |
[22] |
G. Keller, Lifting measures to Markov extensions, Monatsh. Math., 108 (1989), 183-200. |
[23] |
F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.doi: 10.1112/jlms/s2-16.3.568. |
[24] |
R. Leplaideur, K. Oliveira and I. Rios, Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes, Nonlinearity, 19 (2006), 2667-2694.doi: 10.1088/0951-7715/19/11/009. |
[25] |
S. E. Newhouse, Continuity properties of entropy, Annals of Mathematics, 129 (1989), 215-235.doi: 10.2307/1971492. |
[26] |
K. Oliveira, Equilibrium states for non-uniformly expanding maps, Ergodic Theory & Dynamical Systems, 23 (2003), 1891-1905.doi: 10.1017/S0143385703000257. |
[27] |
Y. Pesin and S. Senti, Equilibrium measures for maps with inducing schemes, Journal of Modern Dynamics, 2 (2008), 397-430. |
[28] |
V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Russian Math. Surveys, 22 (1967), 3-56. |
[29] |
D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Encyclopedia of Mathematics and its Applications, Addison-Wesley Publishing Co., Reading, Mass, 5, 1978. |
[30] |
P. Varandas and M. Viana, Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Annales de l Institut Henri Poincaré. Analyse non Linéaire, 27 (2010), 555-593. |
[31] |
W. Cowieson and L. S. Young, SRB measures as zero-noise limits, Ergodic Theory Dynamic Systems, 25 (2005), 1115-1138.doi: 10.1017/S0143385704000604. |