Citation: |
[1] |
L. Arnold and N. Sri Namachchivaya and K. Schenk-Hoppé, Toward an understanding of the stochastic Hopf bifurcation: A case study, Int. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 1947-1975.doi: 10.1142/S0218127496001272. |
[2] |
P. H. Baxendale, Stochastic Averaging and asymptotic behavior of the stochastic Duffing-van der Pol equation, Stoch. Proc. and Appl., 113 (2004), 235-272.doi: 10.1016/j.spa.2004.05.001. |
[3] |
P. H. Baxendale and P. E. Greenwood, Sustained oscillations for density dependent Markov processes, J. Math. Bio., 63 (2011), 433-457.doi: 10.1007/s00285-010-0376-2. |
[4] |
R. Brette and E. Guigon, Reliability of spike timing is a general property of spiking model neurons, Neural Comp., 15 (2003), 279-308.doi: 10.1162/089976603762552924. |
[5] |
H. L. Bryant and J. P. Segundo, Spike initiation by transmembrane current: A white-noise analysis, J. Physiol., 260 (1976), 279-314. |
[6] |
T. Caraballo and P. E. Kloeden and A. Neuenkirch, Synchronization of systems with multiplicative noise, Stoch. Dyn., 8 (2008), 139-154.doi: 10.1142/S0219493708002184. |
[7] |
M. G. Earl and S. H. Strogatz, Synchronization in oscillator networks with delayed coupling: A stability criterion, Phys. Rev E., 67 (2003), 036204.doi: 10.1103/PhysRevE.67.036204. |
[8] |
B. Ermentrout and T.-W. Ko, Delays and weakly coupled neuronal oscillators, Phil. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367 (2009), 1097-1115.doi: 10.1098/rsta.2008.0259. |
[9] |
R. F. Galán, G. B. Ermentrout and N. N. Urban, Optimal time scale for spike-time reliability, J. Neurophysiol., 99 (2008), 277-283. |
[10] |
R. F. Galán, N. Fourcaud-Trocmé, G. B. Ermentrout and N. N. Urban, Correlation-induced synchronization of oscillations in olfactory bulb neurons, Jour. Neurosci., 26 (2006), 3646-3655.doi: 10.1523/JNEUROSCI.4605-05.2006. |
[11] |
D. García-Alvarez, A. Bahraminasab, A. Stefanovska and P. V. E. McClintock, Competition between noise and coupling in the induction of synchronisation, Europhys. Lett., 88 (2009), 30005.doi: 10.1209/0295-5075/88/30005. |
[12] |
C. W. Gardiner, "Handbook of Stochastic Methods. For Physics, Chemistry and the Natural Sciences,'' Springer Series in Synergetics, 13, Springer-Verlag, Berlin, 1983. |
[13] |
D. S. Goldobin and A. Pikovsky, Synchronization and desynchronization of self-sustained oscillators by common noise, Phys. Rev. E (3), 71 (2005), 045201, 4 pp. |
[14] |
D. S. Goldobin, J. Teramae, H. Nakao and G. B. Ermentrout, Dynamics of limit-cycle oscillators subject to general noise, Phys. Rev. Lett., 105 (2010), 154101.doi: 10.1103/PhysRevLett.105.154101. |
[15] |
A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544. |
[16] |
R. P. Kanwal, "Generalized Functions. Theory and Technique,'' Second edition, Birkhäuser Boston, Inc., Boston, MA, 1998. |
[17] |
J. Kevorkian and J. D. Cole, "Perturbation Methods in Applied Mathematics,'' Applied Mathematical Sciences, 34, Springer-Verlag, New York-Berlin, 1981. |
[18] |
P. E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'' Applications of Mathematics (New York), 23, Springer-Verlag, Berlin, 1992. |
[19] |
M. M. Klosek and R. Kuske, Multiscale analysis of stochastic delay differential equations, Mult. Model. Sim., 3 (2005), 706-729.doi: 10.1137/030601375. |
[20] |
Y. Kuramoto, "Chemical Oscillations, Waves, and Turbulence,'' Dover, 2003. |
[21] |
R. Kuske, Multi-scale analysis of noise-sensitivity near a bifurcation, in "IUTAM Symposium on Nonlinear Stochastic Dynamics" (eds. Namachchivaya and Lin), Solid Mech. Appl., 110, Kluwer Acad. Publ., Dordrecht, (2003), 147-156. |
[22] |
R. Kuske, P. Greenwood and L. Gordillo, Sustained oscillations via coherence resonance in SIR, J. Theor. Bio., 245 (2007), 459-469.doi: 10.1016/j.jtbi.2006.10.029. |
[23] |
B. Lindner, J. Garcia-Ojalvo, A. Neiman and L. Schimansky-Geier, Effects of noise in excitable systems, Phys. Rep., 392 (2004), 321-424.doi: 10.1016/j.physrep.2003.10.015. |
[24] |
C. Ly and G. B. Ermentrout, Synchronization dynamics of two coupled neural oscillators receiving shared and unshared noisy stimuli, J. Comput. Neurosci., 26 (2009), 425-443.doi: 10.1007/s10827-008-0120-8. |
[25] |
Z. F. Mainen and T. J. Sejnowski, Reliability of spike timing in neocortical neurons, Science, 268 (1995), 1503-1506. |
[26] |
L. Markus and A. Weerasinghe, Stochastic oscillators, J. Diff. Eq., 71 (1988), 288-314. |
[27] |
L. Markus and A. Weerasinghe, Stochastic non-linear oscillators, Adv. Appl. Prob., 25 (1993), 649-666.doi: 10.2307/1427528. |
[28] |
C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 35 (1981), 193-213.doi: 10.1016/S0006-3495(81)84782-0. |
[29] |
K. H. Nagai and H. Kori, Noise-induced synchronization of a large population of globally coupled nonidentical oscillators, Phys. Rev. E, 81 (2010), 065202.doi: 10.1103/PhysRevE.81.065202. |
[30] |
H. Nakao, K. Arai and Y. Kawamura, Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators, Phys. Rev. Lett., 98 (2007), 184101.doi: 10.1103/PhysRevLett.98.184101. |
[31] |
A. B. Neiman and D. F. Russell, Synchronization of noise-induced bursts in noncoupled sensory neurons, Phys. Rev. Lett., 88 (2002). |
[32] |
J. C. Neu, Coupled chemical oscillators, SIAM J. Appl. Math., 37 (1979), 307-315.doi: 10.1137/0137022. |
[33] |
A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences,'' Cambridge Nonlinear Science Series, 12, Cambridge University Press, Cambridge, 2001. |
[34] |
A. S. Pikovsky and J. Kurths, Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78 (1997), 775-778.doi: 10.1103/PhysRevLett.78.775. |
[35] |
J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations, in "Methods in Neuronal Modeling: From Synapses to Networks," MIT Press, (1989), 135-169. |
[36] |
J. Teramae, H. Nakao and G. B. Ermentrout, Stochastic phase reduction for a general class of noisy limit cycle oscillators, Phys. Rev. Lett., 102 (2009), 194102.doi: 10.1103/PhysRevLett.102.194102. |
[37] |
J. Teramae and D. Tanaka, Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators, Phys. Rev. Lett., 93 (2004), 204103.doi: 10.1103/PhysRevLett.93.204103. |
[38] |
K. Yoshimura and K. Arai, Phase reduction of stochastic limit cycle oscillators, Phys. Rev. Lett., 101 (2008), 154101.doi: 10.1103/PhysRevLett.101.154101. |
[39] |
N. Yu, R. Kuske and Y.-X. Li, Stochastic phase dynamics: Multiscale behavior and coherence measures, Phys. Rev. E, 73 (2006), 056205.doi: 10.1103/PhysRevE.73.056205. |
[40] |
N. Yu, R. Kuske and Y.-X. Li, A computational study of spike time reliability in two cases of threshold dynamics, preprint. |