September  2012, 32(9): 3009-3027. doi: 10.3934/dcds.2012.32.3009

A formal series approach to averaging: Exponentially small error estimates

1. 

INRIA Rennes and ENS Cachan Bretagne, Campus Ker-Lann, av. Robert Schumann, F-35170 Bruz, France

2. 

Konputazio Zientziak eta A. A. Saila, Informatika Fakultatea, UPV/EHU, E-20018 Donostia-San Sebastián, Spain

3. 

Departamento de Matemática Aplicada e IMUVA, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain

Received  December 2011 Revised  March 2012 Published  April 2012

The techniques, based on formal series and combinatorics, used nowadays to analyze numerical integrators may be applied to perform high-order averaging in oscillatory periodic or quasi-periodic dynamical systems. When this approach is employed, the averaged system may be written in terms of (i) scalar coefficients that are universal, i.e. independent of the system under consideration and (ii) basis functions that may be written in an explicit, systematic way in terms of the derivatives of the Fourier coefficients of the vector field being averaged. The coefficients may be recursively computed in a simple fashion. We show that this approach may be used to obtain exponentially small error estimates, as those first derived by Neishtadt. All the constants that feature in the estimates have a simple explicit expression.
Citation: Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009
References:
[1]

V. I. Arnol'd, "Geometrical Methods in the Theory of Ordinary Differential Equations,", 2nd edition, 250 (1988).   Google Scholar

[2]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics,", 2nd edition, 60 (1989).   Google Scholar

[3]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, The Magnus expansion and some of its applications,, Phys. Rep., 470 (2009), 151.  doi: 10.1016/j.physrep.2008.11.001.  Google Scholar

[4]

M. P. Calvo, Ph. Chartier, A. Murua and J. M. Sanz-Serna, A stroboscopic method for highly oscillatory problems,, in, (2011), 73.   Google Scholar

[5]

M. P. Calvo, Ph. Chartier, A. Murua and J. M. Sanz-Serna, Numerical stroboscopic averaging for ODEs and DAEs,, Appl. Numer. Math., 61 (2011), 1077.  doi: 10.1016/j.apnum.2011.06.007.  Google Scholar

[6]

F. Casas, J. A. Oteo and J. Ros, Floquet theory: Exponential perturbative treatment,, J. Phys. A, 34 (2001), 3379.  doi: 10.1088/0305-4470/34/16/305.  Google Scholar

[7]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration I: B-series,, Found. Comput. Math., 10 (2010), 695.  doi: 10.1007/s10208-010-9074-0.  Google Scholar

[8]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration II: The quasi-periodic case,, Found. Comput. Math., ().   Google Scholar

[9]

K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Haussdorff formula,, Annals Math. (2), 65 (1957), 163.  doi: 10.2307/1969671.  Google Scholar

[10]

M. Fliess, Fonctionelles causales nonlinéaires et indeterminées non commutatives,, Bull. Soc. Math. France, 109 (1981), 3.   Google Scholar

[11]

E. Hairer, Ch. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", 2nd edition, 31 (2006).   Google Scholar

[12]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I. Nonstiff Problems,", 2nd edition, (1993).   Google Scholar

[13]

P. Lochak and C. Meunier, "Multiphase Averaging for Classical Systems. With Applications to Adiabatic Theorems,", Applied Mathematical Sciences, 72 (1988).   Google Scholar

[14]

A. Murua, Formal series and numerical integrators. I. Systems of ODEs and symplectic integrators,, Appl. Numer. Math., 29 (1999), 221.  doi: 10.1016/S0168-9274(98)00064-6.  Google Scholar

[15]

A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series,, Found. Comput. Math., 6 (2006), 387.  doi: 10.1007/s10208-003-0111-0.  Google Scholar

[16]

A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase, J. Appl. Math. Mech.,, {\bf 48} (1984), 48 (1984), 133.  doi: 10.1016/0021-8928(84)90078-9.  Google Scholar

[17]

J.-P. Ramis and R. Schäfke, Gevrey separation of fast and slow variables,, Nonlinearity, 9 (1996), 353.  doi: 10.1088/0951-7715/9/2/004.  Google Scholar

[18]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", 2nd edition, 59 (2007).   Google Scholar

[19]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Applied Mathematics and Mathematical Computation, 7 (1994).   Google Scholar

[20]

C. Simó, Averaging under fast quasiperiodic forcing,, in, 331 (1994), 13.   Google Scholar

[21]

H. Sussman, A product expansion of the Chen series,, in, (1986), 325.   Google Scholar

show all references

References:
[1]

V. I. Arnol'd, "Geometrical Methods in the Theory of Ordinary Differential Equations,", 2nd edition, 250 (1988).   Google Scholar

[2]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics,", 2nd edition, 60 (1989).   Google Scholar

[3]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, The Magnus expansion and some of its applications,, Phys. Rep., 470 (2009), 151.  doi: 10.1016/j.physrep.2008.11.001.  Google Scholar

[4]

M. P. Calvo, Ph. Chartier, A. Murua and J. M. Sanz-Serna, A stroboscopic method for highly oscillatory problems,, in, (2011), 73.   Google Scholar

[5]

M. P. Calvo, Ph. Chartier, A. Murua and J. M. Sanz-Serna, Numerical stroboscopic averaging for ODEs and DAEs,, Appl. Numer. Math., 61 (2011), 1077.  doi: 10.1016/j.apnum.2011.06.007.  Google Scholar

[6]

F. Casas, J. A. Oteo and J. Ros, Floquet theory: Exponential perturbative treatment,, J. Phys. A, 34 (2001), 3379.  doi: 10.1088/0305-4470/34/16/305.  Google Scholar

[7]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration I: B-series,, Found. Comput. Math., 10 (2010), 695.  doi: 10.1007/s10208-010-9074-0.  Google Scholar

[8]

P. Chartier, A. Murua and J. M. Sanz-Serna, Higher-order averaging, formal series and numerical integration II: The quasi-periodic case,, Found. Comput. Math., ().   Google Scholar

[9]

K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Haussdorff formula,, Annals Math. (2), 65 (1957), 163.  doi: 10.2307/1969671.  Google Scholar

[10]

M. Fliess, Fonctionelles causales nonlinéaires et indeterminées non commutatives,, Bull. Soc. Math. France, 109 (1981), 3.   Google Scholar

[11]

E. Hairer, Ch. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", 2nd edition, 31 (2006).   Google Scholar

[12]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I. Nonstiff Problems,", 2nd edition, (1993).   Google Scholar

[13]

P. Lochak and C. Meunier, "Multiphase Averaging for Classical Systems. With Applications to Adiabatic Theorems,", Applied Mathematical Sciences, 72 (1988).   Google Scholar

[14]

A. Murua, Formal series and numerical integrators. I. Systems of ODEs and symplectic integrators,, Appl. Numer. Math., 29 (1999), 221.  doi: 10.1016/S0168-9274(98)00064-6.  Google Scholar

[15]

A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series,, Found. Comput. Math., 6 (2006), 387.  doi: 10.1007/s10208-003-0111-0.  Google Scholar

[16]

A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase, J. Appl. Math. Mech.,, {\bf 48} (1984), 48 (1984), 133.  doi: 10.1016/0021-8928(84)90078-9.  Google Scholar

[17]

J.-P. Ramis and R. Schäfke, Gevrey separation of fast and slow variables,, Nonlinearity, 9 (1996), 353.  doi: 10.1088/0951-7715/9/2/004.  Google Scholar

[18]

J. A. Sanders, F. Verhulst and J. Murdock, "Averaging Methods in Nonlinear Dynamical Systems,", 2nd edition, 59 (2007).   Google Scholar

[19]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Applied Mathematics and Mathematical Computation, 7 (1994).   Google Scholar

[20]

C. Simó, Averaging under fast quasiperiodic forcing,, in, 331 (1994), 13.   Google Scholar

[21]

H. Sussman, A product expansion of the Chen series,, in, (1986), 325.   Google Scholar

[1]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[4]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[5]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[6]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[7]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[8]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[9]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[10]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[11]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[12]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[13]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[14]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (13)

[Back to Top]