September  2012, 32(9): 3043-3058. doi: 10.3934/dcds.2012.32.3043

Monotone traveling waves for delayed Lotka-Volterra competition systems

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

2. 

Centre for Disease Modelling and Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3, Canada

Received  January 2012 Revised  March 2012 Published  April 2012

We consider a delayed reaction-diffusion Lotka-Volterra competition system which does not generate a monotone semiflow with respect to the standard ordering relation for competitive systems. We obtain a necessary and sufficient condition for the existence of traveling wave solutions connecting the extinction state to the coexistence state, and prove that such solutions are monotone and unique (up to translation).
Citation: Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043
References:
[1]

M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts: DiekmannKaper theory of a nonlinear convolution equation re-visited,, Math. Ann., ().   Google Scholar

[2]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[3]

N. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[4]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applicaitons,, J. Diff. Eqs., 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[5]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation,, Nonlinearity, 24 (2011), 3043.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[6]

T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[7]

T. Faria and J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Diff. Eqs., 244 (2008), 1049.  doi: 10.1016/j.jde.2007.12.005.  Google Scholar

[8]

T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457.  doi: 10.1088/0951-7715/23/10/006.  Google Scholar

[9]

T. Faria, Stability and extinction for Lotka-Volterra systems with infinite delay,, J. Dynam. Diff. Eqs., 22 (2010), 299.  doi: 10.1007/s10884-010-9166-1.  Google Scholar

[10]

G. Friesecke, Convergence to equilibrium for delay-diffusion equations with small delay,, J. Dynam. Diff. Eqs., 5 (1993), 89.  doi: 10.1007/BF01063736.  Google Scholar

[11]

A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation,, J. Diff. Eqs., 250 (2011), 1767.  doi: 10.1016/j.jde.2010.11.011.  Google Scholar

[12]

S. Gourley, Travelling front solutions of a nonlocal Fisher equation,, J. Math. Biol., 41 (2000), 272.  doi: 10.1007/s002850000047.  Google Scholar

[13]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, J. Dynam. Diff. Eqs., 23 (2011), 353.  doi: 10.1007/s10884-011-9214-5.  Google Scholar

[14]

W. Huang and M. Han, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model,, J. Diff. Eqs., 251 (2011), 1549.  doi: 10.1016/j.jde.2011.05.012.  Google Scholar

[15]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[16]

Y. Kuang and H. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471.  doi: 10.1017/S0334270000009036.  Google Scholar

[17]

Y. Kuang and H. Smith, Global stability for infinite delay Lotka-Volterra type systems,, J. Diff. Eqs., 103 (1993), 221.  doi: 10.1006/jdeq.1993.1048.  Google Scholar

[18]

Y. Kuang, Global stability in delay differential systems without dominating instantaneous negative feedbacks,, J. Diff. Eqs., 119 (1995), 503.  doi: 10.1006/jdeq.1995.1100.  Google Scholar

[19]

M. K. Kwong and C. Ou, Existence and nonexistence of monotone traveling waves for the delayed Fisher equation,, J. Diff. Eqs., 249 (2010), 728.  doi: 10.1016/j.jde.2010.04.017.  Google Scholar

[20]

M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[21]

W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253.  doi: [10.1088/0951-7715/19/6/003].  Google Scholar

[22]

G. Lin, W.-T. Li, and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models,, Dis. Cont. Dyn. Syst. - Series B, 13 (2010), 393.  doi: 10.3934/dcdsb.2010.13.393.  Google Scholar

[23]

B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[24]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[25]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[26]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[27]

J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type,, J. Dynam. Diff. Eqs., 11 (1999), 1.  doi: 10.1023/A:1021889401235.  Google Scholar

[28]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[29]

G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Acad. Sci. Paris, 349 (2011), 553.  doi: 10.1016/j.crma.2011.03.008.  Google Scholar

[30]

C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103.  doi: 10.1137/050638011.  Google Scholar

[31]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Diff. Eqs., 235 (2007), 219.  doi: 10.1016/j.jde.2006.12.010.  Google Scholar

[32]

H. Smith, Systems of ordinary differential equations which generate an order preserving flow. A survey of results,, SIAM Rev., 30 (1988), 87.  doi: 10.1137/1030003.  Google Scholar

[33]

H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys and Monographs, 41 (1995).   Google Scholar

[34]

H. Smith and H. Thieme, Monotone semiflows in scalar non-quasi-monotone functional-differential equations,, J. Math. Anal. Appl., 150 (1990), 289.  doi: 10.1016/0022-247X(90)90105-O.  Google Scholar

[35]

H. Smith and H. Thieme, Strongly order preserving semiflows generated by functional-differential equations,, J. Diff. Eqs., 93 (1991), 332.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[36]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994).   Google Scholar

[37]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems,, J. Non. Sci., 21 (2011), 747.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[38]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[39]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[40]

J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations,, J. Diff. Eqs., 186 (2002), 470.  doi: 10.1016/S0022-0396(02)00012-8.  Google Scholar

[41]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dyn. Diff. Eqs., 13 (2001), 651.  doi: 10.1023/A:1016690424892.  Google Scholar

show all references

References:
[1]

M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts: DiekmannKaper theory of a nonlinear convolution equation re-visited,, Math. Ann., ().   Google Scholar

[2]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[3]

N. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[4]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applicaitons,, J. Diff. Eqs., 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[5]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation,, Nonlinearity, 24 (2011), 3043.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[6]

T. Faria, W. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[7]

T. Faria and J. Oliveira, Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks,, J. Diff. Eqs., 244 (2008), 1049.  doi: 10.1016/j.jde.2007.12.005.  Google Scholar

[8]

T. Faria and S. Trofimchuk, Positive travelling fronts for reaction-diffusion systems with distributed delay,, Nonlinearity, 23 (2010), 2457.  doi: 10.1088/0951-7715/23/10/006.  Google Scholar

[9]

T. Faria, Stability and extinction for Lotka-Volterra systems with infinite delay,, J. Dynam. Diff. Eqs., 22 (2010), 299.  doi: 10.1007/s10884-010-9166-1.  Google Scholar

[10]

G. Friesecke, Convergence to equilibrium for delay-diffusion equations with small delay,, J. Dynam. Diff. Eqs., 5 (1993), 89.  doi: 10.1007/BF01063736.  Google Scholar

[11]

A. Gomez and S. Trofimchuk, Monotone traveling wavefronts of the KPP-Fisher delayed equation,, J. Diff. Eqs., 250 (2011), 1767.  doi: 10.1016/j.jde.2010.11.011.  Google Scholar

[12]

S. Gourley, Travelling front solutions of a nonlocal Fisher equation,, J. Math. Biol., 41 (2000), 272.  doi: 10.1007/s002850000047.  Google Scholar

[13]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, J. Dynam. Diff. Eqs., 23 (2011), 353.  doi: 10.1007/s10884-011-9214-5.  Google Scholar

[14]

W. Huang and M. Han, Non-linear determinacy of minimum wave speed for a Lotka-Volterra competition model,, J. Diff. Eqs., 251 (2011), 1549.  doi: 10.1016/j.jde.2011.05.012.  Google Scholar

[15]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[16]

Y. Kuang and H. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471.  doi: 10.1017/S0334270000009036.  Google Scholar

[17]

Y. Kuang and H. Smith, Global stability for infinite delay Lotka-Volterra type systems,, J. Diff. Eqs., 103 (1993), 221.  doi: 10.1006/jdeq.1993.1048.  Google Scholar

[18]

Y. Kuang, Global stability in delay differential systems without dominating instantaneous negative feedbacks,, J. Diff. Eqs., 119 (1995), 503.  doi: 10.1006/jdeq.1995.1100.  Google Scholar

[19]

M. K. Kwong and C. Ou, Existence and nonexistence of monotone traveling waves for the delayed Fisher equation,, J. Diff. Eqs., 249 (2010), 728.  doi: 10.1016/j.jde.2010.04.017.  Google Scholar

[20]

M. Lewis, B. Li and H. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[21]

W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253.  doi: [10.1088/0951-7715/19/6/003].  Google Scholar

[22]

G. Lin, W.-T. Li, and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models,, Dis. Cont. Dyn. Syst. - Series B, 13 (2010), 393.  doi: 10.3934/dcdsb.2010.13.393.  Google Scholar

[23]

B. Li, H. Weinberger and M. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[24]

B. Li, M. Lewis and H. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[25]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[26]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[27]

J. Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type,, J. Dynam. Diff. Eqs., 11 (1999), 1.  doi: 10.1023/A:1021889401235.  Google Scholar

[28]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[29]

G. Nadin, B. Perthame and M. Tang, Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation,, C. R. Acad. Sci. Paris, 349 (2011), 553.  doi: 10.1016/j.crma.2011.03.008.  Google Scholar

[30]

C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103.  doi: 10.1137/050638011.  Google Scholar

[31]

C. Ou and J. Wu, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,, J. Diff. Eqs., 235 (2007), 219.  doi: 10.1016/j.jde.2006.12.010.  Google Scholar

[32]

H. Smith, Systems of ordinary differential equations which generate an order preserving flow. A survey of results,, SIAM Rev., 30 (1988), 87.  doi: 10.1137/1030003.  Google Scholar

[33]

H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Math. Surveys and Monographs, 41 (1995).   Google Scholar

[34]

H. Smith and H. Thieme, Monotone semiflows in scalar non-quasi-monotone functional-differential equations,, J. Math. Anal. Appl., 150 (1990), 289.  doi: 10.1016/0022-247X(90)90105-O.  Google Scholar

[35]

H. Smith and H. Thieme, Strongly order preserving semiflows generated by functional-differential equations,, J. Diff. Eqs., 93 (1991), 332.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[36]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994).   Google Scholar

[37]

H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion systems,, J. Non. Sci., 21 (2011), 747.  doi: 10.1007/s00332-011-9099-9.  Google Scholar

[38]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[39]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[40]

J. Wu and X.-Q. Zhao, Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations,, J. Diff. Eqs., 186 (2002), 470.  doi: 10.1016/S0022-0396(02)00012-8.  Google Scholar

[41]

J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay,, J. Dyn. Diff. Eqs., 13 (2001), 651.  doi: 10.1023/A:1016690424892.  Google Scholar

[1]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[2]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[5]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[6]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[7]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[8]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[9]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[10]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[11]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[12]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[13]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[14]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[15]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[16]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[17]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[18]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[19]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[20]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]