-
Previous Article
Conservation laws in mathematical biology
- DCDS Home
- This Issue
-
Next Article
Monotone traveling waves for delayed Lotka-Volterra competition systems
Relative entropies in thermodynamics of complete fluid systems
1. | Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic |
References:
[1] |
S. E. Bechtel, F. J. Rooney and M. G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids,, J. Appl. Mech., 72 (2005), 299.
doi: 10.1115/1.1831297. |
[2] |
E. Becker, "Gasdynamik,", (German), (1966).
|
[3] |
D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.
doi: 10.1016/j.matpur.2006.11.001. |
[4] |
J. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatshefte Math., 133 (2001), 1.
doi: 10.1007/s006050170032. |
[5] |
C. M. Dafermos, The second law of thermodynamics and stability,, Arch. Rational Mech. Anal., 70 (1979), 167.
doi: 10.1007/BF00250353. |
[6] |
B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Commun. Partial Differential Equations, 22 (1997), 977.
|
[7] |
R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.
doi: 10.1007/BF01393835. |
[8] |
S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications,", Cambridge University Press, (1986). Google Scholar |
[9] |
E. Feireisl and Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., (2012). Google Scholar |
[10] |
E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).
|
[11] |
E. Feireisl, A. Novotný and B. J. Jin, Relative entropies, suitable weak solutions, and uniqueness for the compressible Navier-Stokes system,, J. Math. Fluid Mechanics, (2012). Google Scholar |
[12] |
E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids,, Indiana Univ. Math. J., (2012). Google Scholar |
[13] |
E. Feireisl and D. Pražák, "Asymptotic Behavior of Dynamical Systems in Fluid Mechanics,", AIMS Series on Applied Mathematics, 4 (2010).
|
[14] |
P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., (2010). Google Scholar |
[15] |
A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 39 (): 1344.
doi: 10.1137/060658199. |
[16] |
L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method,, Annal. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 705.
|
show all references
References:
[1] |
S. E. Bechtel, F. J. Rooney and M. G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids,, J. Appl. Mech., 72 (2005), 299.
doi: 10.1115/1.1831297. |
[2] |
E. Becker, "Gasdynamik,", (German), (1966).
|
[3] |
D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.
doi: 10.1016/j.matpur.2006.11.001. |
[4] |
J. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities,, Monatshefte Math., 133 (2001), 1.
doi: 10.1007/s006050170032. |
[5] |
C. M. Dafermos, The second law of thermodynamics and stability,, Arch. Rational Mech. Anal., 70 (1979), 167.
doi: 10.1007/BF00250353. |
[6] |
B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations,, Commun. Partial Differential Equations, 22 (1997), 977.
|
[7] |
R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,, Invent. Math., 98 (1989), 511.
doi: 10.1007/BF01393835. |
[8] |
S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications,", Cambridge University Press, (1986). Google Scholar |
[9] |
E. Feireisl and Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system,, Arch. Rational Mech. Anal., (2012). Google Scholar |
[10] |
E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).
|
[11] |
E. Feireisl, A. Novotný and B. J. Jin, Relative entropies, suitable weak solutions, and uniqueness for the compressible Navier-Stokes system,, J. Math. Fluid Mechanics, (2012). Google Scholar |
[12] |
E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids,, Indiana Univ. Math. J., (2012). Google Scholar |
[13] |
E. Feireisl and D. Pražák, "Asymptotic Behavior of Dynamical Systems in Fluid Mechanics,", AIMS Series on Applied Mathematics, 4 (2010).
|
[14] |
P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., (2010). Google Scholar |
[15] |
A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 39 (): 1344.
doi: 10.1137/060658199. |
[16] |
L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method,, Annal. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 705.
|
[1] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[2] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[3] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[4] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[5] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[6] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[9] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[10] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[11] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[12] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[13] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[14] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[15] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[16] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[17] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[18] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[19] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]