September  2012, 32(9): 3059-3080. doi: 10.3934/dcds.2012.32.3059

Relative entropies in thermodynamics of complete fluid systems

1. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic

Received  November 2011 Revised  March 2012 Published  April 2012

We introduce the notion of relative entropy in the framework of thermodynamics of compressible, viscous and heat conducting fluids. The relative entropy is constructed on the basis of a thermodynamic potential called ballistic free energy and provides stability of solutions to the associated Navier-Stokes-Fourier system with respect to perturbations. The theory is illustrated by applications to problems related to the long time behavior of solutions and the problem of weak-strong uniqueness.
Citation: Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059
References:
[1]

S. E. Bechtel, F. J. Rooney and M. G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids, J. Appl. Mech., 72 (2005), 299-300. doi: 10.1115/1.1831297.

[2]

E. Becker, "Gasdynamik," (German), Leitfäden der Angewandten Mathematik und Mechanik, Band 6, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1966.

[3]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90. doi: 10.1016/j.matpur.2006.11.001.

[4]

J. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatshefte Math., 133 (2001), 1-82. doi: 10.1007/s006050170032.

[5]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179. doi: 10.1007/BF00250353.

[6]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations, Commun. Partial Differential Equations, 22 (1997), 977-1008.

[7]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.

[8]

S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications," Cambridge University Press, Cambridge, 1986.

[9]

E. Feireisl and Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system, Arch. Rational Mech. Anal., to appear, 2012.

[10]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids," Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.

[11]

E. Feireisl, A. Novotný and B. J. Jin, Relative entropies, suitable weak solutions, and uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mechanics, to appear, 2012.

[12]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., to appear, 2012.

[13]

E. Feireisl and D. Pražák, "Asymptotic Behavior of Dynamical Systems in Fluid Mechanics," AIMS Series on Applied Mathematics, 4, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010.

[14]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., published online, 2010.

[15]

A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 39 (): 1344.  doi: 10.1137/060658199.

[16]

L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method, Annal. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 705-744.

show all references

References:
[1]

S. E. Bechtel, F. J. Rooney and M. G. Forest, Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids, J. Appl. Mech., 72 (2005), 299-300. doi: 10.1115/1.1831297.

[2]

E. Becker, "Gasdynamik," (German), Leitfäden der Angewandten Mathematik und Mechanik, Band 6, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1966.

[3]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90. doi: 10.1016/j.matpur.2006.11.001.

[4]

J. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatshefte Math., 133 (2001), 1-82. doi: 10.1007/s006050170032.

[5]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179. doi: 10.1007/BF00250353.

[6]

B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations, Commun. Partial Differential Equations, 22 (1997), 977-1008.

[7]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. doi: 10.1007/BF01393835.

[8]

S. Eliezer, A. Ghatak and H. Hora, "An Introduction to Equations of States, Theory and Applications," Cambridge University Press, Cambridge, 1986.

[9]

E. Feireisl and Novotný, Weak-strong uniqueness property for the full Navier-Stokes-Fourier system, Arch. Rational Mech. Anal., to appear, 2012.

[10]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids," Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.

[11]

E. Feireisl, A. Novotný and B. J. Jin, Relative entropies, suitable weak solutions, and uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mechanics, to appear, 2012.

[12]

E. Feireisl, A. Novotný and Y. Sun, Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., to appear, 2012.

[13]

E. Feireisl and D. Pražák, "Asymptotic Behavior of Dynamical Systems in Fluid Mechanics," AIMS Series on Applied Mathematics, 4, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010.

[14]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., published online, 2010.

[15]

A. Mellet and A. Vasseur, Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations,, SIAM J. Math. Anal., 39 (): 1344.  doi: 10.1137/060658199.

[16]

L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy method, Annal. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 705-744.

[1]

Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834

[2]

Mohamad Rachid. Incompressible Navier-Stokes-Fourier limit from the Landau equation. Kinetic and Related Models, 2021, 14 (4) : 599-638. doi: 10.3934/krm.2021017

[3]

Ansgar Jüngel, Josipa-Pina Milišić. Full compressible Navier-Stokes equations for quantum fluids: Derivation and numerical solution. Kinetic and Related Models, 2011, 4 (3) : 785-807. doi: 10.3934/krm.2011.4.785

[4]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[5]

Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021231

[6]

Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028

[7]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic and Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[8]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic and Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

[9]

Debanjana Mitra, Mythily Ramaswamy, Jean-Pierre Raymond. Largest space for the stabilizability of the linearized compressible Navier-Stokes system in one dimension. Mathematical Control and Related Fields, 2015, 5 (2) : 259-290. doi: 10.3934/mcrf.2015.5.259

[10]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[11]

Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure and Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161

[12]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[13]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[14]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[15]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[16]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[17]

Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure and Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893

[18]

Guochun Wu, Han Wang, Yinghui Zhang. Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $. Electronic Research Archive, 2021, 29 (6) : 3889-3908. doi: 10.3934/era.2021067

[19]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[20]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (122)
  • HTML views (0)
  • Cited by (32)

Other articles
by authors

[Back to Top]