\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Symbolic dynamics for the $N$-centre problem at negative energies

Abstract Related Papers Cited by
  • We consider the planar $N$-centre problem, with homogeneous potentials of degree $-\alpha < 0$, $\alpha \in [1,2)$. We prove the existence of infinitely many collisions-free periodic solutions with negative and small energy, for any distribution of the centres inside a compact set. The proof is based upon topological, variational and geometric arguments. The existence result allows to characterize the associated dynamical system with a symbolic dynamics, where the symbols are the partitions of the $N$ centres in two non-empty sets.
    Mathematics Subject Classification: Primary: 70F10, 37N05; Secondary: 70F15, 37J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and V. Coti Zelati, "Periodic Solutions of Singular Lagrangian Systems," Birkhäuser, 1993.

    [2]

    V. Barutello, S. Terracini and G. Verzini, Entire parabolic trajectories as minimal phase transitions, preprint, 2011.

    [3]

    V. Barutello, S. Terracini and G. Verzini, Entire minimal parabolic trajectories: The planar anisotropic Kepler problem, preprint, 2011.

    [4]

    V. Barutello, D. L. Ferrario and S. TerraciniOn the singularities of generalized solutions to $n$-body-type problems, Int. Math. Res. Notices IMRN, 2008, Art. ID rnn 069, 78 pp.

    [5]

    S. V. Bolotin, Nonintegrability of the $n$-center problem for $n>2$, Mosc. Univ. Mech. Bull., 39 (1984), 24-28; translated from Vestnik Mosk. Univ. Ser. I Math. Mekh., 1984, 65-68.

    [6]

    S. V. Bolotin and P. Negrini, Regularization and topological entropy for the spatial $n$-center problem, Ergodic Theory Dyn. Systems, 21 (2001), 383-399.doi: 10.1017/S0143385701001195.

    [7]

    S. V. Bolotin and P. Negrini, Chaotic behaviour in the $3$-center problem, J. Differential Equations, 190 (2003), 539-558.

    [8]

    H. Brezis, "Analyse Fonctionnelle, Théorie et Applications," Colletion Mathématiques Appliquées por la Maîtrise, Massons, Paris, 1983.

    [9]

    R. Castelli, "On the Variational Approach to the One and N-Centre Problem with Weak Forces," Ph.D Thesis, University of Milano-Bicocca, 2009.

    [10]

    K.-C. Chen, Existence and minimizing properties of retrograde orbits to the three-body problem with various choices of masses, Ann. of Math. (2), 167 (2008), 325-348.doi: 10.4007/annals.2008.167.325.

    [11]

    K.-C. Chen, Variational constructions for some satellite orbits in periodic gravitational force fields, Amer. J. Math., 132 (2010), 681-709.doi: 10.1353/ajm.0.0124.

    [12]

    L. Dimare, Chaotic quasi-collision trajectories in the $3$-centre problem, Celest. Mech Dyn. Astr., 107 (2010), 427-449.doi: 10.1007/s10569-010-9284-4.

    [13]

    M. P. Do Carmo, "Riemaniann Geometry," Series of Mathematics, Birkhäuser, Boston, 1992.

    [14]

    P. Felmer and K. Tanaka, Scattering solutions for planar singular Hamiltonian systems via minimization, Adv. Differential Equations, 5 (2000), 1519-1544.

    [15]

    D. L. Ferrario, Transitive decomposition of symmetry groups for the n-body problem, Adv. Math., 213 (2007), 763-784.doi: 10.1016/j.aim.2007.01.009.

    [16]

    G. Fusco, G. F. Gronchi and P. Negrini, Platonic polyhedra, topological constraints and periodic solutions of the classical N-body problem, Inv. Math.,185 (2011), 283-332.doi: 10.1007/s00222-010-0306-3.

    [17]

    M. Klein and A. Knauf, "Classical Planar Scattering by Coulombic Potentials," Lecture Notes in Physics, Springer, Berlin, 1992.

    [18]

    A. Knauf, The n-centre problem of celestial mechanics for large energies, J. Eur. Math. Soc., 4 (2002), 1-114.doi: 10.1007/s100970100037.

    [19]

    A. Knauf and M. Krapf, The escape rate of a molecule, Math. Phys. Anal. Geom., 13 (2010), 159-189.doi: 10.1007/s11040-010-9073-z.

    [20]

    A. Knauf and I. A. Taimanov, On the integrability of the $n$-centre problem, Math. Ann., 331 (2005), 631-649.doi: 10.1007/s00208-004-0598-y.

    [21]

    T. Levi-Civita, Sur la régularisation du problème des trois corps, Acta Math., 42 (1920), 99-144.doi: 10.1007/BF02404404.

    [22]

    C. Marchal, How the method of minimization of action avoids singularities, Cel. Mech. Dyn. Ast., 83 (2002), 325-353.doi: 10.1023/A:1020128408706.

    [23]

    C. Moore, Braids in classical dynamics, Phys. Rev. Lett., 70 (1993), 3675-3679.doi: 10.1103/PhysRevLett.70.3675.

    [24]

    J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure. Appl. Math., 23 (1970), 609-636.doi: 10.1002/cpa.3160230406.

    [25]

    H. Seifert, Periodischer bewegungen mechanischer system, Math. Zeit, 51 (1948), 197-216.doi: 10.1007/BF01291002.

    [26]

    S. Terracini and A. Venturelli, Symmetric trajectories for the $2N$-body problem with equal masses, Arch. Ration. Mech. Anal., 184 (2007), 465-493.doi: 10.1007/s00205-006-0030-8.

    [27]

    A. Venturelli, Une caractérisation variationelle des solutions de Lagrange du probl\`eme plan des trois corps, Comp. Rend. Acad. Sci. Paris Sér. I Math., 332 (2001), 641-644.

    [28]

    A. Venturelli, "Application de la Minimisation de l'Action au Problème de N Corps Dans le Plan e Dans lÉspace," Ph.D Thesis, University Paris VII, 2002.

    [29]

    A. Wintner, "The Analytical Foundations of Celestial Mechanics," Princeton University Press, 1941.

    [30]

    E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies," Cambridge University Press, New York, 1959.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return