- Previous Article
- DCDS Home
- This Issue
-
Next Article
The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat
Boundary layer for nonlinear evolution equations with damping and diffusion
1. | The Hubei Key Laboratory of Mathematical Physics, School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China, China |
References:
[1] |
W. Allegretto, Y. P. Lin and Z. Y. Zhang, Properties of global decaying solution to the Cauchy problem of nonlinear evolution equations, Z. Angew. Math. Phys., 59 (2008), 848-868.
doi: 10.1007/s00033-008-7026-1. |
[2] |
K. M. Chen and C. J. Zhu, The zero diffusion limit for nonlinear hyperbolic system with damping and diffusion, J. Hyperbolic Differ. Equ., 5 (2008), 767-783. |
[3] |
R. J. Duan, S. Q. Tang and C. J. Zhu, Asymptotics in nonlinear evolution system with dissipation and ellipticity on quadrant, J. Math. Anal. Appl., 323 (2006), 1152-1170.
doi: 10.1016/j.jmaa.2005.11.002. |
[4] |
R. J. Duan and C. J. Zhu, Asymptotics of dissipative nonlinear evolution equations with ellipticity: Different end states, J. Math. Anal. Appl., 303 (2005), 15-35.
doi: 10.1016/j.jmaa.2004.06.007. |
[5] |
P. C. Fife, Considerations regarding the mathematical basis for Prandtl's boundary layer theory,, Arch. Rational Mech. Anal., 28 (): 184.
|
[6] |
H. Frid and V. Shelukhin, Boundary layers for the Navier-Stokes equations of compressible fluids, Comm. Math. Phys., 208 (1999), 309-330.
doi: 10.1007/s002200050760. |
[7] |
H. Frid and V. Shelukhin, Boundary layers in parabolic perturbations of scalar conservation laws, Z. Angew. Math. Phys., 55 (2004), 420-434.
doi: 10.1007/s00033-003-1094-z. |
[8] |
M. Gisclon and D. Serre, Étude des conditions aus limites pour un système strictement hyperbolique via l'approximation parabolique (French) [Study of boundary conditions for a strictly hyperbolic system via parabolic approximation], C.R. Acad. Sci. Paris Ser. I Math., 319 (1994), 377-382. |
[9] |
E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Equations, 143 (1998), 110-146. |
[10] |
D. Y. Hsieh, On partial differential equations related to Lorenz system, J. Math. Phys., 28 (1987), 1589-1597.
doi: 10.1063/1.527465. |
[11] |
H. Y. Jian and D. G. Chen, On the Cauchy problem for certain system of semilinear parabolic equations, Acta Math. Sinica, 14 (1998), 27-34.
doi: 10.1007/BF02563880. |
[12] |
S. Jiang and J. W. Zhang, Boundary layers for the Navier-Stokes equations of compressible heat-conducting flows with cylindrical symmetry, SIAM J. Math. Anal., 41 (2009), 237-268.
doi: 10.1137/07070005X. |
[13] |
L. R. Keefe, Dynamics of perturbed wavetrain solutions to the Ginzberg-Landau equation, Stud. Appl. Math., 73 (1985), 91-153. |
[14] |
Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Progr. Theoret. Phys., 54 (1975), 687-699.
doi: 10.1143/PTP.54.687. |
[15] |
T. P. Liu and S. H. Yu, Propagation of a stationary shock layer in the presence of a boundary, Arch. Rational Mech. Anal., 139 (1997), 57-82.
doi: 10.1007/s002050050047. |
[16] |
K. Nishihara, Asymptotic profile of solutions to nonlinear dissipative evolution system with ellipticity, Z. angew. Math. Phys., 57 (2006), 604-614.
doi: 10.1007/s00033-006-0062-9. |
[17] |
K. Nishihara and T. Yang, Boundary effect on asymptotic behavior of solutions to the $p$-system with linear damping, J. Differential Equations, 156 (1999), 439-458. |
[18] |
O. A. Oleinik and V. N. Samokhin, "Mathematical Models in Boundary Layer Theory. Applied Mathematics and Mathematical Computation," 15. Chapman & Hall/CRC, Boca Raton, FL, 1999. |
[19] |
F. Rousset, Stability of small amplitude boundary layers for mixed hyperbolic-parabolic systems, Trans. Amer. Math. Soc., 355 (2003), 2991-3008.
doi: 10.1090/S0002-9947-03-03279-3. |
[20] |
H. Schlichting and K. Gersten, "Boundary-Layer Theory," with contributions by Egon Krause and Herbert Oertel, Jr., translated from the ninth German edition by Katherine Mayes, eighth revised and enlarged edition, Springer-Verlag, Berlin, 2000. |
[21] |
D. Serre and K. Zumbrun, Boundary layer stability in real vanishing viscosity limit, Comm. Math. Phys., 221 (2001), 267-292.
doi: 10.1007/s002200100486. |
[22] |
S. Q. Tang and H. J. Zhao, Nonlinear stability for dissipative nonlinear evolution equations with ellipticity, J. Math. Anal. Appl., 233 (1999), 336-358.
doi: 10.1006/jmaa.1999.6316. |
[23] |
G. Tian and Z. P. Xin, Gradient estimation on Navier-Stokes equations, Comm. Anal. Geom., 7 (1999), 221-257. |
[24] |
Y. G. Wang and Z. P. Xin, Zero-viscosity limit of the linearized compressible Navier-Stokes equations with highly oscillatory forces in the half-plane, SIAM J. Math. Anal., 37 (2005), 1256-1298.
doi: 10.1137/040614967. |
[25] |
Z.A. Wang, Optimal decay rates of solutions to dissipative nonlinear evolution equations with ellipticity, Z. Angew. Math. Phys., 57 (2006), 399-418.
doi: 10.1007/s00033-005-0030-9. |
[26] |
Z. P. Xin, Viscous boundary layers and their stability I., J. Partial Differential Equations, 11 (1998), 97-124. |
[27] |
Z. P. Xin and T. Yanagisawa, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane, Comm. Pure Appl. Math., 52 (1999), 479-541.
doi: 10.1002/(SICI)1097-0312(199904)52:4<479::AID-CPA4>3.0.CO;2-1. |
[28] |
C. J. Zhu and Z. A. Wang, Decay rates of solutions to dissipative nonlinear evolution equations with ellipticity, Z. Angew. Math. Phys., 55 (2004), 994-1014.
doi: 10.1007/s00033-004-3117-9. |
show all references
References:
[1] |
W. Allegretto, Y. P. Lin and Z. Y. Zhang, Properties of global decaying solution to the Cauchy problem of nonlinear evolution equations, Z. Angew. Math. Phys., 59 (2008), 848-868.
doi: 10.1007/s00033-008-7026-1. |
[2] |
K. M. Chen and C. J. Zhu, The zero diffusion limit for nonlinear hyperbolic system with damping and diffusion, J. Hyperbolic Differ. Equ., 5 (2008), 767-783. |
[3] |
R. J. Duan, S. Q. Tang and C. J. Zhu, Asymptotics in nonlinear evolution system with dissipation and ellipticity on quadrant, J. Math. Anal. Appl., 323 (2006), 1152-1170.
doi: 10.1016/j.jmaa.2005.11.002. |
[4] |
R. J. Duan and C. J. Zhu, Asymptotics of dissipative nonlinear evolution equations with ellipticity: Different end states, J. Math. Anal. Appl., 303 (2005), 15-35.
doi: 10.1016/j.jmaa.2004.06.007. |
[5] |
P. C. Fife, Considerations regarding the mathematical basis for Prandtl's boundary layer theory,, Arch. Rational Mech. Anal., 28 (): 184.
|
[6] |
H. Frid and V. Shelukhin, Boundary layers for the Navier-Stokes equations of compressible fluids, Comm. Math. Phys., 208 (1999), 309-330.
doi: 10.1007/s002200050760. |
[7] |
H. Frid and V. Shelukhin, Boundary layers in parabolic perturbations of scalar conservation laws, Z. Angew. Math. Phys., 55 (2004), 420-434.
doi: 10.1007/s00033-003-1094-z. |
[8] |
M. Gisclon and D. Serre, Étude des conditions aus limites pour un système strictement hyperbolique via l'approximation parabolique (French) [Study of boundary conditions for a strictly hyperbolic system via parabolic approximation], C.R. Acad. Sci. Paris Ser. I Math., 319 (1994), 377-382. |
[9] |
E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Equations, 143 (1998), 110-146. |
[10] |
D. Y. Hsieh, On partial differential equations related to Lorenz system, J. Math. Phys., 28 (1987), 1589-1597.
doi: 10.1063/1.527465. |
[11] |
H. Y. Jian and D. G. Chen, On the Cauchy problem for certain system of semilinear parabolic equations, Acta Math. Sinica, 14 (1998), 27-34.
doi: 10.1007/BF02563880. |
[12] |
S. Jiang and J. W. Zhang, Boundary layers for the Navier-Stokes equations of compressible heat-conducting flows with cylindrical symmetry, SIAM J. Math. Anal., 41 (2009), 237-268.
doi: 10.1137/07070005X. |
[13] |
L. R. Keefe, Dynamics of perturbed wavetrain solutions to the Ginzberg-Landau equation, Stud. Appl. Math., 73 (1985), 91-153. |
[14] |
Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Progr. Theoret. Phys., 54 (1975), 687-699.
doi: 10.1143/PTP.54.687. |
[15] |
T. P. Liu and S. H. Yu, Propagation of a stationary shock layer in the presence of a boundary, Arch. Rational Mech. Anal., 139 (1997), 57-82.
doi: 10.1007/s002050050047. |
[16] |
K. Nishihara, Asymptotic profile of solutions to nonlinear dissipative evolution system with ellipticity, Z. angew. Math. Phys., 57 (2006), 604-614.
doi: 10.1007/s00033-006-0062-9. |
[17] |
K. Nishihara and T. Yang, Boundary effect on asymptotic behavior of solutions to the $p$-system with linear damping, J. Differential Equations, 156 (1999), 439-458. |
[18] |
O. A. Oleinik and V. N. Samokhin, "Mathematical Models in Boundary Layer Theory. Applied Mathematics and Mathematical Computation," 15. Chapman & Hall/CRC, Boca Raton, FL, 1999. |
[19] |
F. Rousset, Stability of small amplitude boundary layers for mixed hyperbolic-parabolic systems, Trans. Amer. Math. Soc., 355 (2003), 2991-3008.
doi: 10.1090/S0002-9947-03-03279-3. |
[20] |
H. Schlichting and K. Gersten, "Boundary-Layer Theory," with contributions by Egon Krause and Herbert Oertel, Jr., translated from the ninth German edition by Katherine Mayes, eighth revised and enlarged edition, Springer-Verlag, Berlin, 2000. |
[21] |
D. Serre and K. Zumbrun, Boundary layer stability in real vanishing viscosity limit, Comm. Math. Phys., 221 (2001), 267-292.
doi: 10.1007/s002200100486. |
[22] |
S. Q. Tang and H. J. Zhao, Nonlinear stability for dissipative nonlinear evolution equations with ellipticity, J. Math. Anal. Appl., 233 (1999), 336-358.
doi: 10.1006/jmaa.1999.6316. |
[23] |
G. Tian and Z. P. Xin, Gradient estimation on Navier-Stokes equations, Comm. Anal. Geom., 7 (1999), 221-257. |
[24] |
Y. G. Wang and Z. P. Xin, Zero-viscosity limit of the linearized compressible Navier-Stokes equations with highly oscillatory forces in the half-plane, SIAM J. Math. Anal., 37 (2005), 1256-1298.
doi: 10.1137/040614967. |
[25] |
Z.A. Wang, Optimal decay rates of solutions to dissipative nonlinear evolution equations with ellipticity, Z. Angew. Math. Phys., 57 (2006), 399-418.
doi: 10.1007/s00033-005-0030-9. |
[26] |
Z. P. Xin, Viscous boundary layers and their stability I., J. Partial Differential Equations, 11 (1998), 97-124. |
[27] |
Z. P. Xin and T. Yanagisawa, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane, Comm. Pure Appl. Math., 52 (1999), 479-541.
doi: 10.1002/(SICI)1097-0312(199904)52:4<479::AID-CPA4>3.0.CO;2-1. |
[28] |
C. J. Zhu and Z. A. Wang, Decay rates of solutions to dissipative nonlinear evolution equations with ellipticity, Z. Angew. Math. Phys., 55 (2004), 994-1014.
doi: 10.1007/s00033-004-3117-9. |
[1] |
Walter Allegretto, Yanping Lin, Zhiyong Zhang. Convergence to convection-diffusion waves for solutions to dissipative nonlinear evolution equations. Conference Publications, 2009, 2009 (Special) : 11-23. doi: 10.3934/proc.2009.2009.11 |
[2] |
Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887 |
[3] |
Pierluigi Colli, Gianni Gilardi, Pavel Krejčí, Jürgen Sprekels. A vanishing diffusion limit in a nonstandard system of phase field equations. Evolution Equations and Control Theory, 2014, 3 (2) : 257-275. doi: 10.3934/eect.2014.3.257 |
[4] |
José A. Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1027-1050. doi: 10.3934/dcdsb.2006.6.1027 |
[5] |
Hongyun Peng, Lizhi Ruan, Changjiang Zhu. Convergence rates of zero diffusion limit on large amplitude solution to a conservation laws arising in chemotaxis. Kinetic and Related Models, 2012, 5 (3) : 563-581. doi: 10.3934/krm.2012.5.563 |
[6] |
Markus Gahn. Singular limit for reactive transport through a thin heterogeneous layer including a nonlinear diffusion coefficient. Communications on Pure and Applied Analysis, 2022, 21 (1) : 61-82. doi: 10.3934/cpaa.2021167 |
[7] |
Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure and Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835 |
[8] |
Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic and Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003 |
[9] |
Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009 |
[10] |
Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108 |
[11] |
L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799 |
[12] |
Kelei Wang. The singular limit problem in a phase separation model with different diffusion rates $^*$. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 483-512. doi: 10.3934/dcds.2015.35.483 |
[13] |
Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015 |
[14] |
Thomas Strömberg. A system of the Hamilton--Jacobi and the continuity equations in the vanishing viscosity limit. Communications on Pure and Applied Analysis, 2011, 10 (2) : 479-506. doi: 10.3934/cpaa.2011.10.479 |
[15] |
De-han Chen, Daijun jiang. Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. Inverse Problems and Imaging, 2021, 15 (5) : 951-974. doi: 10.3934/ipi.2021023 |
[16] |
Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083 |
[17] |
Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2967. doi: 10.3934/dcdsb.2020047 |
[18] |
Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920 |
[19] |
Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic and Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008 |
[20] |
James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]