-
Previous Article
Inverting the Furstenberg correspondence
- DCDS Home
- This Issue
-
Next Article
Regularity of $\infty$ for elliptic equations with measurable coefficients and its consequences
Computation of rotation numbers for a class of PL-circle homeomorphisms
1. | University of Carthage, Faculty of Science of Bizerte, Department of Mathematics, Zarzouna, 7021, Tunisia, Tunisia |
References:
[1] |
A. Adouani and H. Marzougui, Sur les Homéomorphismes du cercle de classe $P$ $C^r$ par morceaux ($r\geq 1$) qui sont conjugués $C^r$ par morceaux aux rotations irrationnelles, Ann. Inst. Fourier (Grenoble), 58 (2008), 755-775.
doi: 10.5802/aif.2368. |
[2] |
A. Adouani and H. Marzougui, On piecewise smoothness of conjugacy of class P circle homeomorphisms to diffeomorphisms and rotations, Dynamical Systems, to appear, 2012. |
[3] |
M. D. Boshernitzan, Dense orbits of rationals, Proc. Amer. Math. Soc., 117 (1993), 1201-1203.
doi: 10.1090/S0002-9939-1993-1134622-6. |
[4] |
A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375. |
[5] |
Z. Coelho, A. Lopez and L. F. da Rocha, Absolutely continuous invariant measures for a class of affine interval exchange maps, Proc. Amer. Math. Soc., 123 (1995), 3533-3542.
doi: 10.1090/S0002-9939-1995-1322918-6. |
[6] |
M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5-233.
doi: 10.1007/BF02684798. |
[7] |
I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 269-280.
doi: 10.1007/s00574-004-0014-y. |
[8] |
I. Liousse, Rotation numbers in Thompson-Stein groups and applications, Geom. Dedicata, 131 (2008), 49-71.
doi: 10.1007/s10711-007-9216-y. |
[9] |
I. Liousse, Nombre de rotation dans les groupes de Thompson généralisés, automorphismes, preprint, 2006. Available from: http://hal.ccsd.cnrs.fr/ccsd-00004554. |
[10] |
show all references
References:
[1] |
A. Adouani and H. Marzougui, Sur les Homéomorphismes du cercle de classe $P$ $C^r$ par morceaux ($r\geq 1$) qui sont conjugués $C^r$ par morceaux aux rotations irrationnelles, Ann. Inst. Fourier (Grenoble), 58 (2008), 755-775.
doi: 10.5802/aif.2368. |
[2] |
A. Adouani and H. Marzougui, On piecewise smoothness of conjugacy of class P circle homeomorphisms to diffeomorphisms and rotations, Dynamical Systems, to appear, 2012. |
[3] |
M. D. Boshernitzan, Dense orbits of rationals, Proc. Amer. Math. Soc., 117 (1993), 1201-1203.
doi: 10.1090/S0002-9939-1993-1134622-6. |
[4] |
A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375. |
[5] |
Z. Coelho, A. Lopez and L. F. da Rocha, Absolutely continuous invariant measures for a class of affine interval exchange maps, Proc. Amer. Math. Soc., 123 (1995), 3533-3542.
doi: 10.1090/S0002-9939-1995-1322918-6. |
[6] |
M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5-233.
doi: 10.1007/BF02684798. |
[7] |
I. Liousse, PL Homeomorphisms of the circle which are piecewise $C^1$ conjugate to irrational rotations, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 269-280.
doi: 10.1007/s00574-004-0014-y. |
[8] |
I. Liousse, Rotation numbers in Thompson-Stein groups and applications, Geom. Dedicata, 131 (2008), 49-71.
doi: 10.1007/s10711-007-9216-y. |
[9] |
I. Liousse, Nombre de rotation dans les groupes de Thompson généralisés, automorphismes, preprint, 2006. Available from: http://hal.ccsd.cnrs.fr/ccsd-00004554. |
[10] |
[1] |
Abdumajid Begmatov, Akhtam Dzhalilov, Dieter Mayer. Renormalizations of circle hoemomorphisms with a single break point. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4487-4513. doi: 10.3934/dcds.2014.34.4487 |
[2] |
Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381 |
[3] |
Jan J. Dijkstra and Jan van Mill. Homeomorphism groups of manifolds and Erdos space. Electronic Research Announcements, 2004, 10: 29-38. |
[4] |
Yves Cornulier. Realizations of groups of piecewise continuous transformations of the circle. Journal of Modern Dynamics, 2020, 16: 59-80. doi: 10.3934/jmd.2020003 |
[5] |
A. A. Pinto, D. Sullivan. The circle and the solenoid. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 463-504. doi: 10.3934/dcds.2006.16.463 |
[6] |
Malo Jézéquel. Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 927-958. doi: 10.3934/dcds.2019039 |
[7] |
Stefano Galatolo, Alfonso Sorrentino. Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 815-839. doi: 10.3934/dcds.2021138 |
[8] |
M . Bartušek, John R. Graef. Some limit-point/limit-circle results for third order differential equations. Conference Publications, 2001, 2001 (Special) : 31-38. doi: 10.3934/proc.2001.2001.31 |
[9] |
Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597 |
[10] |
Jimmy Tseng. On circle rotations and the shrinking target properties. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1111-1122. doi: 10.3934/dcds.2008.20.1111 |
[11] |
Hicham Zmarrou, Ale Jan Homburg. Dynamics and bifurcations of random circle diffeomorphism. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 719-731. doi: 10.3934/dcdsb.2008.10.719 |
[12] |
Heather Hannah, A. Alexandrou Himonas, Gerson Petronilho. Anisotropic Gevrey regularity for mKdV on the circle. Conference Publications, 2011, 2011 (Special) : 634-642. doi: 10.3934/proc.2011.2011.634 |
[13] |
Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251 |
[14] |
Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147 |
[15] |
Xiaolei Zhang, Yanqin Xiong, Yi Zhang. The number of limit cycles by perturbing a piecewise linear system with three zones. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1833-1855. doi: 10.3934/cpaa.2022049 |
[16] |
Arek Goetz. Dynamics of a piecewise rotation. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593 |
[17] |
Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007 |
[18] |
Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597 |
[19] |
Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098 |
[20] |
Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]