February  2012, 32(2): 353-379. doi: 10.3934/dcds.2012.32.353

Lie's reduction method and differential Galois theory in the complex analytic context

1. 

Universidad Sergio Arboleda, Calle 74 no. 14-14, Bogotá, D.C., Colombia

2. 

Departamento de Matemática e Informática Aplicadas a la Ingeniería Civil, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Profesor Aranguren s/n (Ciudad Universitaria) - 28040 Madrid, Spain

Received  December 2010 Revised  April 2011 Published  September 2011

This paper is dedicated to the differential Galois theory in the complex analytic context for Lie-Vessiot systems. Those are the natural generalization of linear systems, and the more general class of differential equations adimitting superposition laws, as recently stated in [5]. A Lie-Vessiot system is automatically translated into a equation in a Lie group that we call automorphic system. Reciprocally an automorphic system induces a hierarchy of Lie-Vessiot systems. In this work we study the global analytic aspects of a classical method of reduction of differential equations, due to S. Lie. We propose an differential Galois theory for automorphic systems, and explore the relationship between integrability in terms of Galois theory and the Lie's reduction method. Finally we explore the algebra of Lie symmetries of a general automorphic system.
Citation: David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353
References:
[1]

C. Athorne and T. Hartl, Solvable structures and hidden symmetries, J. Phys. A, 27 (1995), 3463-3474.

[2]

C. Athorne, Symmetries of linear ordinary differential equations, J. Phys. A, 30 (1997), 4639-4649. doi: 10.1088/0305-4470/30/13/015.

[3]

C. Athorne, On the Lie symmetry algebra of general ordinary differential equation, J. Phys. A, 31 (1998), 6605-6614. doi: 10.1088/0305-4470/31/31/008.

[4]

D. Blázquez-Sanz and J. J. Morales-Ruiz, Differential Galois theory of algebraic Lie-Vessiot systems, in "Differential Algebra, Complex Analysis and Orthogonal Polynomials,'' 1-58, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010.

[5]

D. Blázquez-Sanz and J. J. Morales-Ruiz, Local and global aspects of Lie superposition theorem, J. Lie Theory, 20 (2010), 483-517.

[6]

R. L. Bryant, "An introduction to Lie Groups and Symplectic Geometry,'' Lectures at the R.G.I. in Park City, Utah, 1991.

[7]

A. Buium, "Differential Function Fields and Moduli of Algebraic Varieties,'' Lecture Notes in Mathematics, 1226, Springer-Verlag, Berlin, 1986.

[8]

J. F. Cariñena, J. Grabowski and G. Marmo, "Lie-Scheffers Systems: A Geometric Approach,'' Napoli Series on Physics and Astrophysics, Bibliopolis, Naples, 2000.

[9]

J. F. Cariñena, J. Grabowski and G. Marmo, Superposition rules, Lie theorem, and partial differential equations, Rep. Math. Phys., 60 (2007), 237-258.

[10]

J. F. Cariñena, J. Grabowski and A. Ramos, Reduction of time-dependent systems admitting a superposition principle, Acta Appl. Math., 66 (2001), 67-87. doi: 10.1023/A:1010743114995.

[11]

J. F. Cariñena, J. de Lucas and M. F. Rañada, Recent applications of the theory of Lie systems in Ermakov systems, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 031, 18 pp.

[12]

J. F. Cariñena and A. Ramos, A new geometric approach to Lie systems and physical applications. Symmetry and perturbation theory, Acta Appl. Math., 70 (2002), 43-69. doi: 10.1023/A:1013913930134.

[13]

G. Casale, Feuilletages singuliers de codimension un, groupoïde de Galois et intégrales premières, (French) [Singular foliations of codimension one, Galois groupoids and first integrals], Ann. Inst. Fourier (Grenoble), 56 (2006), 735-779.

[14]

G. Casale, The Galois groupoid of Picard-Painlevé VI equation, "Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies,'' 15-20, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007.

[15]

G. Casale, Le groupoïde de Galois de $P_1$ et son irréductibilité, Comment. Math. Helv., 83 (2008), 471-519. doi: 10.4171/CMH/133.

[16]

G. Darboux, "Leçons sur la théorie générale des surfaces. I, II,'' (French) [Lessons on the general theory of surfaces. I, II] Reprint of the second (1914) edition (I) and the second (1915) edition (II), Les Grands Classiques Gauthier-Villars, Cours de Géométrie de la Faculté des Sciences, Éditions Jacques Gabay, Sceaux, 1993.

[17]

W. Fulton and J. Harris, "Representation Theory. A First Course,'' Graduate Texts in Mathematics, 129, Readings in Mathematics, Springer-Verlag, New York, 1991.

[18]

A. Guldberg, Sur les équations différentialles ordinaries qui possèdent un système fondamental d'intègrales, Compt. Rend. Acad. Sci. Paris, T CXVI, (1893), 964-965.

[19]

M. Havlíček, S. Pošta and P. Winternitz, Nonlinear superposition formulas based on imprimitive group action, J. Math. Phys., 40 (1999), 3104-3122. doi: 10.1063/1.532749.

[20]

J. E. Humphreys, "Linear Algebraic Groups,'' Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975.

[21]

I. Kaplansky, "An Introduction to Differential Algebra,'' Actualités Sci. Ind., No. 1251, Hermann, Paris, 1957.

[22]

E. R. Kolchin, Galois theory of differential fields, Amer. J. Math., 75 (1953), 753-824. doi: 10.2307/2372550.

[23]

E. R. Kolchin, "Differential Algebra and Algebraic Groups,'' Pure and Applied Mathematics, 54, Academic Press, New York-London, 1973.

[24]

A. G. Khovanskiĭ, Topological obstructions to the representability of functions by quadratures, J. Dynam. Control Systems, 1 (1995), 91-123. doi: 10.1007/BF02254657.

[25]

S. Lie, Allgemeine Untersuchungen über Differentialgleichungen, die eine continuierliche endliche Gruppe gestatten, Math. Ann. Bd., 25 (1885), 71-151. doi: 10.1007/BF01446421.

[26]

S. Lie, "Über Differentialgleichungen die Fundamentalintegrale besitzen,'' Lepziger Berichte, 1893.

[27]

S. Lie, "Vorlesungen über continuierliche Gruppen mit Geometrischen und anderen Anwendungen,'' (German) Bearbeitet und herausgegeben von Georg Scheffers, Nachdruck der Auflage des Jahres 1893, Chelsea Publishing Co., Bronx, N.Y., 1971.

[28]

S. Lie, Sur les équations différentielles ordinaries, qui possèddent des systemes fondamentaux d'integrales, Compt. Rend. Acad. Sci. Paris, T CXVI, (1893), 1233-1235.

[29]

S. Lie and G. Scheffers, "Vorlesungen über Differentialgleichungen mit bekannten Infinitesimalen Transformationen,'' Reprinted by Chelsea books, N.Y., 1967.

[30]

J. Liouville, Mémoire sur l'integration de une classe de équations différentielles du second ordre en quantités finies explicités, J. Math. Pures Appl., 4 (1839), 423-456.

[31]

B. Malgrange, Le groupoïde de Galois d'un feuilletage, (French) [The Galois groupoid of a foliation], in "Essays on Geometry and Related Topics," Vol. 1, 2, 465-501, Monogr. Enseign. Math., 38, Enseignement Math., Geneva, 2001.

[32]

B. Malgrange, On nonlinear differential Galois theory, Chinese Ann. Math. Ser. B, 23 (2002), 219-226. doi: 10.1142/S0252959902000213.

[33]

B. Malgrange, "Pseudogroupes de Lie et Théorie de Galois Différentielle,'' (French) [Lie Pseudogroups and Differential Galois Theory], Prepublications I.H.E.S., 2010.

[34]

P. Malliavin, "Géométrie Différentielle Intrinsèque,'' (French) [Intrinsic Differential Geometry], Collection Enseignement des Sciences, No. 14, Hermann, Paris, 1972.

[35]

M. Maamache, Ermakov systems, exact solution, and geometrical angles and phases, Phys. Rev. A (3), 52 (1995), 936-940. doi: 10.1103/PhysRevA.52.936.

[36]

J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems. I, II, Methods Appl. Anal., 8 (2001), 33-95, 97-111.

[37]

J. J. Morales-Ruiz and J.-P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods Appl. Anal., 8 (2001), 113-120.

[38]

J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,'' Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999.

[39]

J. J. Morales-Ruiz, J.-P. Ramis and C. Simo, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. cole Norm. Sup. (4), 40 (2007), 845-884.

[40]

K. Nishioka, Differential algebraic function fields depending rationally on arbitrary constants, Nagoya Math. J., 113 (1989), 173-179.

[41]

K. Nishioka, General solutions depending algebraically on arbitrary constants, Nagoya Math. J., 113 (1989), 1-6.

[42]

K. Nishioka, Lie extensions, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 82-85. doi: 10.3792/pjaa.73.82.

[43]

K. Nomizu, "Lie Groups and Differential Geometry,'' The Mathematical Society of Japan, 1956.

[44]

J.-P. Ramis and J. Martinet, Théorie de Galois différentielle et resommation, (French) [Differential Galois theory and resummation], in "Computer Algebra and Differential Equations,'' 117-214, Comput. Math. Appl., Academic Press, London, 1990.

[45]

M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci., 35 (1963), 487-489.

[46]

C. Sancho de Salas, "Grupos Algebraicos y Teoría de Invariantes,'' (Spanish) [Algebraic Groups and Invariant Theory], Aportaciones Matemáticas: Textos [Mathematical Contributions: Texts], 16, Sociedad Matemática Mexicana, México, 2001.

[47]

J.-P. Serre, Géométrie algébrique et géométrie analytique (French), Ann. Inst. Fourier, Grenoble, 6 (1955-1956), 1-42.

[48]

J.-P. Serre, Espaces fibrés algebriques (French), Séminaire Claude Chevalley, 3 (1958), 1-37.

[49]

Y. Sibuya, "Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation,'' Translated from the Japanese by the author, Translations of Mathematical Monographs, 82, American Mathematical Society, Providence, RI, 1990.

[50]

S. Shnider and P. Winternitz, Classification of systems of nonlinear ordinary differential equations with superposition principles, J. Math. Phys., 25 (1984), 3155-3165. doi: 10.1063/1.526085.

[51]

M. Sorine and P. Winternitz, Superposition laws for solutions of differential matrix Riccati equations arising in control theory, IEEE Trans. Automat. Control, 30 (1985), 266-272. doi: 10.1109/TAC.1985.1103934.

[52]

H. Umemura, On the irreducibility of the first differential equation of Painlevé, in "Algebraic Geometry and Commutative Algebra,'' Vol. II, 771-789, Kinokuniya, Tokyo, 1988.

[53]

H. Umemura, Galois theory of algebraic and differential equations, Nagoya Math. J., 144 (1996), 1-58.

[54]

H. Umemura, Differential Galois theory of infinite dimension, Nagoya Math. J., 144 (1996), 59-135.

[55]

H. Umemura, Sur l'équivalence des théories de Galois différentielles générales, (French) [On the equivalence of general differential Galois theories], C. R. Math. Acad. Sci. Paris, 346 (2008), 1155-1158.

[56]

M. van der Put and M. F. Singer, "Galois Theory of Linear Differential Equations,'' Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 328, Springer-Verlag, Berlin, 2003.

[57]

E. Vessiot, Sur l'intégration des equations différentielles linéaires (French), Ann. Sci. École Norm. Sup. (3), 9 (1892), 197-280.

[58]

E. Vessiot, Sur une classe d'équations différentielles, Ann. Sci. École Norm. Sup. (3), 10 (1893), 53-64.

[59]

E. Vessiot, Sur une classe systèmes d'équations différentielles ordinaires, Compt. Rend. Acad. Sci. Paris, T. CXVI, (1893), 1112-1114.

[60]

E. Vessiot, Sur les systèmes d'équations différentielles du premier ordre qui ont des systèmes fondamentaux d'intégrales, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 8 (1894), H1-H33.

[61]

E. Vessiot, Sur la théorie de Galois et ses diverses généralisations (French), Ann. Sci. École Norm. Sup. (3), 21 (1904), 9-85.

[62]

E. Vessiot, Sur la réductibilité des systèmes automorphes dont le groupe d'automorphie est un groupe continu fini simplement transitif (French), Ann. École Norm. (3), 57 (1940), 1-60.

show all references

References:
[1]

C. Athorne and T. Hartl, Solvable structures and hidden symmetries, J. Phys. A, 27 (1995), 3463-3474.

[2]

C. Athorne, Symmetries of linear ordinary differential equations, J. Phys. A, 30 (1997), 4639-4649. doi: 10.1088/0305-4470/30/13/015.

[3]

C. Athorne, On the Lie symmetry algebra of general ordinary differential equation, J. Phys. A, 31 (1998), 6605-6614. doi: 10.1088/0305-4470/31/31/008.

[4]

D. Blázquez-Sanz and J. J. Morales-Ruiz, Differential Galois theory of algebraic Lie-Vessiot systems, in "Differential Algebra, Complex Analysis and Orthogonal Polynomials,'' 1-58, Contemp. Math., 509, Amer. Math. Soc., Providence, RI, 2010.

[5]

D. Blázquez-Sanz and J. J. Morales-Ruiz, Local and global aspects of Lie superposition theorem, J. Lie Theory, 20 (2010), 483-517.

[6]

R. L. Bryant, "An introduction to Lie Groups and Symplectic Geometry,'' Lectures at the R.G.I. in Park City, Utah, 1991.

[7]

A. Buium, "Differential Function Fields and Moduli of Algebraic Varieties,'' Lecture Notes in Mathematics, 1226, Springer-Verlag, Berlin, 1986.

[8]

J. F. Cariñena, J. Grabowski and G. Marmo, "Lie-Scheffers Systems: A Geometric Approach,'' Napoli Series on Physics and Astrophysics, Bibliopolis, Naples, 2000.

[9]

J. F. Cariñena, J. Grabowski and G. Marmo, Superposition rules, Lie theorem, and partial differential equations, Rep. Math. Phys., 60 (2007), 237-258.

[10]

J. F. Cariñena, J. Grabowski and A. Ramos, Reduction of time-dependent systems admitting a superposition principle, Acta Appl. Math., 66 (2001), 67-87. doi: 10.1023/A:1010743114995.

[11]

J. F. Cariñena, J. de Lucas and M. F. Rañada, Recent applications of the theory of Lie systems in Ermakov systems, SIGMA Symmetry Integrability Geom. Methods Appl., 4 (2008), Paper 031, 18 pp.

[12]

J. F. Cariñena and A. Ramos, A new geometric approach to Lie systems and physical applications. Symmetry and perturbation theory, Acta Appl. Math., 70 (2002), 43-69. doi: 10.1023/A:1013913930134.

[13]

G. Casale, Feuilletages singuliers de codimension un, groupoïde de Galois et intégrales premières, (French) [Singular foliations of codimension one, Galois groupoids and first integrals], Ann. Inst. Fourier (Grenoble), 56 (2006), 735-779.

[14]

G. Casale, The Galois groupoid of Picard-Painlevé VI equation, "Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies,'' 15-20, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007.

[15]

G. Casale, Le groupoïde de Galois de $P_1$ et son irréductibilité, Comment. Math. Helv., 83 (2008), 471-519. doi: 10.4171/CMH/133.

[16]

G. Darboux, "Leçons sur la théorie générale des surfaces. I, II,'' (French) [Lessons on the general theory of surfaces. I, II] Reprint of the second (1914) edition (I) and the second (1915) edition (II), Les Grands Classiques Gauthier-Villars, Cours de Géométrie de la Faculté des Sciences, Éditions Jacques Gabay, Sceaux, 1993.

[17]

W. Fulton and J. Harris, "Representation Theory. A First Course,'' Graduate Texts in Mathematics, 129, Readings in Mathematics, Springer-Verlag, New York, 1991.

[18]

A. Guldberg, Sur les équations différentialles ordinaries qui possèdent un système fondamental d'intègrales, Compt. Rend. Acad. Sci. Paris, T CXVI, (1893), 964-965.

[19]

M. Havlíček, S. Pošta and P. Winternitz, Nonlinear superposition formulas based on imprimitive group action, J. Math. Phys., 40 (1999), 3104-3122. doi: 10.1063/1.532749.

[20]

J. E. Humphreys, "Linear Algebraic Groups,'' Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York-Heidelberg, 1975.

[21]

I. Kaplansky, "An Introduction to Differential Algebra,'' Actualités Sci. Ind., No. 1251, Hermann, Paris, 1957.

[22]

E. R. Kolchin, Galois theory of differential fields, Amer. J. Math., 75 (1953), 753-824. doi: 10.2307/2372550.

[23]

E. R. Kolchin, "Differential Algebra and Algebraic Groups,'' Pure and Applied Mathematics, 54, Academic Press, New York-London, 1973.

[24]

A. G. Khovanskiĭ, Topological obstructions to the representability of functions by quadratures, J. Dynam. Control Systems, 1 (1995), 91-123. doi: 10.1007/BF02254657.

[25]

S. Lie, Allgemeine Untersuchungen über Differentialgleichungen, die eine continuierliche endliche Gruppe gestatten, Math. Ann. Bd., 25 (1885), 71-151. doi: 10.1007/BF01446421.

[26]

S. Lie, "Über Differentialgleichungen die Fundamentalintegrale besitzen,'' Lepziger Berichte, 1893.

[27]

S. Lie, "Vorlesungen über continuierliche Gruppen mit Geometrischen und anderen Anwendungen,'' (German) Bearbeitet und herausgegeben von Georg Scheffers, Nachdruck der Auflage des Jahres 1893, Chelsea Publishing Co., Bronx, N.Y., 1971.

[28]

S. Lie, Sur les équations différentielles ordinaries, qui possèddent des systemes fondamentaux d'integrales, Compt. Rend. Acad. Sci. Paris, T CXVI, (1893), 1233-1235.

[29]

S. Lie and G. Scheffers, "Vorlesungen über Differentialgleichungen mit bekannten Infinitesimalen Transformationen,'' Reprinted by Chelsea books, N.Y., 1967.

[30]

J. Liouville, Mémoire sur l'integration de une classe de équations différentielles du second ordre en quantités finies explicités, J. Math. Pures Appl., 4 (1839), 423-456.

[31]

B. Malgrange, Le groupoïde de Galois d'un feuilletage, (French) [The Galois groupoid of a foliation], in "Essays on Geometry and Related Topics," Vol. 1, 2, 465-501, Monogr. Enseign. Math., 38, Enseignement Math., Geneva, 2001.

[32]

B. Malgrange, On nonlinear differential Galois theory, Chinese Ann. Math. Ser. B, 23 (2002), 219-226. doi: 10.1142/S0252959902000213.

[33]

B. Malgrange, "Pseudogroupes de Lie et Théorie de Galois Différentielle,'' (French) [Lie Pseudogroups and Differential Galois Theory], Prepublications I.H.E.S., 2010.

[34]

P. Malliavin, "Géométrie Différentielle Intrinsèque,'' (French) [Intrinsic Differential Geometry], Collection Enseignement des Sciences, No. 14, Hermann, Paris, 1972.

[35]

M. Maamache, Ermakov systems, exact solution, and geometrical angles and phases, Phys. Rev. A (3), 52 (1995), 936-940. doi: 10.1103/PhysRevA.52.936.

[36]

J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems. I, II, Methods Appl. Anal., 8 (2001), 33-95, 97-111.

[37]

J. J. Morales-Ruiz and J.-P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential, Methods Appl. Anal., 8 (2001), 113-120.

[38]

J. J. Morales-Ruiz, "Differential Galois Theory and Non-Integrability of Hamiltonian Systems,'' Progress in Mathematics, 179, Birkhäuser Verlag, Basel, 1999.

[39]

J. J. Morales-Ruiz, J.-P. Ramis and C. Simo, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. cole Norm. Sup. (4), 40 (2007), 845-884.

[40]

K. Nishioka, Differential algebraic function fields depending rationally on arbitrary constants, Nagoya Math. J., 113 (1989), 173-179.

[41]

K. Nishioka, General solutions depending algebraically on arbitrary constants, Nagoya Math. J., 113 (1989), 1-6.

[42]

K. Nishioka, Lie extensions, Proc. Japan Acad. Ser. A Math. Sci., 73 (1997), 82-85. doi: 10.3792/pjaa.73.82.

[43]

K. Nomizu, "Lie Groups and Differential Geometry,'' The Mathematical Society of Japan, 1956.

[44]

J.-P. Ramis and J. Martinet, Théorie de Galois différentielle et resommation, (French) [Differential Galois theory and resummation], in "Computer Algebra and Differential Equations,'' 117-214, Comput. Math. Appl., Academic Press, London, 1990.

[45]

M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci., 35 (1963), 487-489.

[46]

C. Sancho de Salas, "Grupos Algebraicos y Teoría de Invariantes,'' (Spanish) [Algebraic Groups and Invariant Theory], Aportaciones Matemáticas: Textos [Mathematical Contributions: Texts], 16, Sociedad Matemática Mexicana, México, 2001.

[47]

J.-P. Serre, Géométrie algébrique et géométrie analytique (French), Ann. Inst. Fourier, Grenoble, 6 (1955-1956), 1-42.

[48]

J.-P. Serre, Espaces fibrés algebriques (French), Séminaire Claude Chevalley, 3 (1958), 1-37.

[49]

Y. Sibuya, "Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation,'' Translated from the Japanese by the author, Translations of Mathematical Monographs, 82, American Mathematical Society, Providence, RI, 1990.

[50]

S. Shnider and P. Winternitz, Classification of systems of nonlinear ordinary differential equations with superposition principles, J. Math. Phys., 25 (1984), 3155-3165. doi: 10.1063/1.526085.

[51]

M. Sorine and P. Winternitz, Superposition laws for solutions of differential matrix Riccati equations arising in control theory, IEEE Trans. Automat. Control, 30 (1985), 266-272. doi: 10.1109/TAC.1985.1103934.

[52]

H. Umemura, On the irreducibility of the first differential equation of Painlevé, in "Algebraic Geometry and Commutative Algebra,'' Vol. II, 771-789, Kinokuniya, Tokyo, 1988.

[53]

H. Umemura, Galois theory of algebraic and differential equations, Nagoya Math. J., 144 (1996), 1-58.

[54]

H. Umemura, Differential Galois theory of infinite dimension, Nagoya Math. J., 144 (1996), 59-135.

[55]

H. Umemura, Sur l'équivalence des théories de Galois différentielles générales, (French) [On the equivalence of general differential Galois theories], C. R. Math. Acad. Sci. Paris, 346 (2008), 1155-1158.

[56]

M. van der Put and M. F. Singer, "Galois Theory of Linear Differential Equations,'' Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 328, Springer-Verlag, Berlin, 2003.

[57]

E. Vessiot, Sur l'intégration des equations différentielles linéaires (French), Ann. Sci. École Norm. Sup. (3), 9 (1892), 197-280.

[58]

E. Vessiot, Sur une classe d'équations différentielles, Ann. Sci. École Norm. Sup. (3), 10 (1893), 53-64.

[59]

E. Vessiot, Sur une classe systèmes d'équations différentielles ordinaires, Compt. Rend. Acad. Sci. Paris, T. CXVI, (1893), 1112-1114.

[60]

E. Vessiot, Sur les systèmes d'équations différentielles du premier ordre qui ont des systèmes fondamentaux d'intégrales, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 8 (1894), H1-H33.

[61]

E. Vessiot, Sur la théorie de Galois et ses diverses généralisations (French), Ann. Sci. École Norm. Sup. (3), 21 (1904), 9-85.

[62]

E. Vessiot, Sur la réductibilité des systèmes automorphes dont le groupe d'automorphie est un groupe continu fini simplement transitif (French), Ann. École Norm. (3), 57 (1940), 1-60.

[1]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[2]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[3]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

[4]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021020

[5]

Yuhki Hosoya. First-order partial differential equations and consumer theory. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1143-1167. doi: 10.3934/dcdss.2018065

[6]

Fathalla A. Rihan, Yang Kuang, Gennady Bocharov. From the guest editors: "Delay Differential Equations: Theory, Applications and New Trends". Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : i-iv. doi: 10.3934/dcdss.2020404

[7]

Yanzhao Cao, Anping Liu, Zhimin Zhang. Special section on differential equations: Theory, application, and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : i-ii. doi: 10.3934/dcdsb.2015.20.5i

[8]

Yuling Guo, Zhongqing Wang. A multi-domain Chebyshev collocation method for nonlinear fractional delay differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022052

[9]

Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304

[10]

Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure and Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211

[11]

Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373-381. doi: 10.3934/proc.2007.2007.373

[12]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure and Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[13]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[14]

Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics and Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021

[15]

Luigi Fontana, Steven G. Krantz and Marco M. Peloso. Hodge theory in the Sobolev topology for the de Rham complex on a smoothly bounded domain in Euclidean space. Electronic Research Announcements, 1995, 1: 103-107.

[16]

Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082

[17]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure and Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280

[18]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[19]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[20]

Huaiyu Jian, Xiaolin Liu, Hongjie Ju. The regularity for a class of singular differential equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1307-1319. doi: 10.3934/cpaa.2013.12.1307

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (133)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]