-
Previous Article
Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains
- DCDS Home
- This Issue
-
Next Article
Cone-fields without constant orbit core dimension
Averaging of an homogeneous two-phase flow model with oscillating external forces
1. | Department of Mathematics, Florida International University, DM413B, University Park, Miami, Florida 33199, United States |
References:
[1] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992. |
[2] |
C. Bernier, Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension, Adv. Math. Sci. Appl., 4 (1994), 465-489. |
[3] |
T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow, Pysica D (Applied Physics), 32 (1999), 1119-1123.
doi: 10.1088/0022-3727/32/10/307. |
[4] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. |
[5] |
C. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure Appl. Math., 56 (2003), 198-233.
doi: 10.1002/cpa.10056. |
[6] |
C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math. (2), 166 (2007), 245-267.
doi: 10.4007/annals.2007.166.245. |
[7] |
T. Caraballo and P. E. Kloeden, Non-autonomous attractor for integro-differential evolution equations, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 17-36. |
[8] |
T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.
doi: 10.1098/rspa.2003.1166. |
[9] |
T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012. |
[10] |
V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating coefficients, International Conference on Differential and Functional Differential Equations (Moscow, 1999), Funct. Differ. Equ., 8 (2001), 123-140. |
[11] |
V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms, Sb. Math., 192 (2001), 11-47.
doi: 10.1070/SM2001v192n01ABEH000534. |
[12] |
V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces, J. Math. Pures Appl. (9), 90 (2008), 469-491. |
[13] |
V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces, Nonlinearity, 22 (2009), 351-370.
doi: 10.1088/0951-7715/22/2/006. |
[14] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002. |
[15] |
V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor, J. Dynam. Differential Equations, 19 (2007), 655-684.
doi: 10.1007/s10884-007-9077-y. |
[16] |
V. V. Chepyzhov, M. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst., 12 (2005), 27-38. |
[17] |
A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55-66. |
[18] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differential Equations, 2 (1995), 307-341. |
[19] |
E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-flow model for two-phase compressible fluids,, Math. Models Methods Appli. Sci., ().
|
[20] |
C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.
doi: 10.1016/j.anihpc.2009.11.013. |
[21] |
C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010), 1-39. |
[22] |
C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678.
doi: 10.1007/s11401-010-0603-6. |
[23] |
A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications," Recherches en Mathématiques Appliquées, 17, Mason, Paris, 1991. |
[24] |
N. Ju, The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179.
doi: 10.3934/dcds.2007.17.159. |
[25] |
P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14 (1997), 141-152.
doi: 10.1023/A:1019156812251. |
[26] |
P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations, Dyn. Continuous Impulsive Systems, 4 (1998), 211-226. |
[27] |
J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, 5 (1992), 237-288. |
[28] |
J. L. Lions, R. Temam and S. Wang, On the equations of large-scale ocean, Nonlinearity, 5 (1992), 1007-1053. |
[29] |
S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces, J. Differential Equations, 230 (2006), 196-212.
doi: 10.1016/j.jde.2006.07.009. |
[30] |
S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719.
doi: 10.3934/dcds.2005.13.701. |
[31] |
T. Tachim Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor, Nonlinear Anal. Real World Appl., 12 (2011), 1437-1452.
doi: 10.1016/j.nonrwa.2010.10.004. |
[32] |
R. Samelson, R. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Appl. Anal., 70 (1998), 147-173.
doi: 10.1080/00036819808840682. |
[33] |
H. Song, S. Ma and C. Zhong, Attractors of non-autonomous reaction-diffusion equations, Nonlinearity, 22 (2009), 667-681.
doi: 10.1088/0951-7715/22/3/008. |
[34] |
R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," Vol. 68, Second edition, Appl. Math. Sci., Springer-Verlag, New York, 1988. |
[35] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," AMS-Chelsea Series, AMS, Providence, 2001. |
[36] |
Y. Wang and C. Zhong, On the existence of pullback attractors for non-autonomous reaction-diffusion equations, Dyn. Syst., 23 (2008), 1-16. |
show all references
References:
[1] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992. |
[2] |
C. Bernier, Existence of attractor for the quasi-geostrophic approximation of the Navier-Stokes equations and estimate of its dimension, Adv. Math. Sci. Appl., 4 (1994), 465-489. |
[3] |
T. Blesgen, A generalization of the Navier-Stokes equation to two-phase flow, Pysica D (Applied Physics), 32 (1999), 1119-1123.
doi: 10.1088/0022-3727/32/10/307. |
[4] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. |
[5] |
C. Cao and E. S. Titi, Global well-posedness and finite-dimensional global attractor for a 3-D planetary geostrophic viscous model, Comm. Pure Appl. Math., 56 (2003), 198-233.
doi: 10.1002/cpa.10056. |
[6] |
C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math. (2), 166 (2007), 245-267.
doi: 10.4007/annals.2007.166.245. |
[7] |
T. Caraballo and P. E. Kloeden, Non-autonomous attractor for integro-differential evolution equations, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 17-36. |
[8] |
T. Caraballo and J. Real, Asymptotic behavior of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181-3194.
doi: 10.1098/rspa.2003.1166. |
[9] |
T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012. |
[10] |
V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating coefficients, International Conference on Differential and Functional Differential Equations (Moscow, 1999), Funct. Differ. Equ., 8 (2001), 123-140. |
[11] |
V. V. Chepyzhov and M. I. Vishik, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms, Sb. Math., 192 (2001), 11-47.
doi: 10.1070/SM2001v192n01ABEH000534. |
[12] |
V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of nonautonomous damped wave equations with singularly oscillating external forces, J. Math. Pures Appl. (9), 90 (2008), 469-491. |
[13] |
V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces, Nonlinearity, 22 (2009), 351-370.
doi: 10.1088/0951-7715/22/2/006. |
[14] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002. |
[15] |
V. V. Chepyzhov and M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor, J. Dynam. Differential Equations, 19 (2007), 655-684.
doi: 10.1007/s10884-007-9077-y. |
[16] |
V. V. Chepyzhov, M. I. Vishik and W. L. Wendland, On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst., 12 (2005), 27-38. |
[17] |
A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55-66. |
[18] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differential Equations, 2 (1995), 307-341. |
[19] |
E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-flow model for two-phase compressible fluids,, Math. Models Methods Appli. Sci., ().
|
[20] |
C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 401-436.
doi: 10.1016/j.anihpc.2009.11.013. |
[21] |
C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28 (2010), 1-39. |
[22] |
C. G. Gal and M. Grasselli, Trajectory attractors for binary fluid mixtures in 3D, Chin. Ann. Math. Ser. B, 31 (2010), 655-678.
doi: 10.1007/s11401-010-0603-6. |
[23] |
A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications," Recherches en Mathématiques Appliquées, 17, Mason, Paris, 1991. |
[24] |
N. Ju, The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17 (2007), 159-179.
doi: 10.3934/dcds.2007.17.159. |
[25] |
P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14 (1997), 141-152.
doi: 10.1023/A:1019156812251. |
[26] |
P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations, Dyn. Continuous Impulsive Systems, 4 (1998), 211-226. |
[27] |
J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity, 5 (1992), 237-288. |
[28] |
J. L. Lions, R. Temam and S. Wang, On the equations of large-scale ocean, Nonlinearity, 5 (1992), 1007-1053. |
[29] |
S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces, J. Differential Equations, 230 (2006), 196-212.
doi: 10.1016/j.jde.2006.07.009. |
[30] |
S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719.
doi: 10.3934/dcds.2005.13.701. |
[31] |
T. Tachim Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor, Nonlinear Anal. Real World Appl., 12 (2011), 1437-1452.
doi: 10.1016/j.nonrwa.2010.10.004. |
[32] |
R. Samelson, R. Temam and S. Wang, Some mathematical properties of the planetary geostrophic equations for large-scale ocean circulation, Appl. Anal., 70 (1998), 147-173.
doi: 10.1080/00036819808840682. |
[33] |
H. Song, S. Ma and C. Zhong, Attractors of non-autonomous reaction-diffusion equations, Nonlinearity, 22 (2009), 667-681.
doi: 10.1088/0951-7715/22/3/008. |
[34] |
R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," Vol. 68, Second edition, Appl. Math. Sci., Springer-Verlag, New York, 1988. |
[35] |
R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis," AMS-Chelsea Series, AMS, Providence, 2001. |
[36] |
Y. Wang and C. Zhong, On the existence of pullback attractors for non-autonomous reaction-diffusion equations, Dyn. Syst., 23 (2008), 1-16. |
[1] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[2] |
Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137 |
[3] |
Theodore Tachim Medjo. Pullback $ \mathbb{V}-$attractor of a three dimensional globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2141-2169. doi: 10.3934/dcds.2018088 |
[4] |
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 |
[5] |
Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1 |
[6] |
T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265 |
[7] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[8] |
Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090 |
[9] |
T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure and Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415 |
[10] |
Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541 |
[11] |
Yasuhito Miyamoto. Global bifurcation and stable two-phase separation for a phase field model in a disk. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 791-806. doi: 10.3934/dcds.2011.30.791 |
[12] |
K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591 |
[13] |
Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020 |
[14] |
Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146 |
[15] |
Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011 |
[16] |
Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 |
[17] |
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006 |
[18] |
Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93 |
[19] |
Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016 |
[20] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]