-
Previous Article
On stacked central configurations of the planar coorbital satellites problem
- DCDS Home
- This Issue
-
Next Article
Averaging of an homogeneous two-phase flow model with oscillating external forces
Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains
1. | Department of Mathematics, Faculty of Sciences, Ehime University, Matsuyama, 790-8577 |
2. | Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804-8550, Japan |
References:
[1] |
S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96. |
[2] |
J. Bebernes and D. Eberly, A description of self-similar blow-up for dimensions $n \geq 3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 1-21. |
[3] |
P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. III, Colloq. Math., 68 (1995), 229-239. |
[4] |
P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math., 66 (1994), 319-334. |
[5] |
P. Biler and T. Nadzieja, Growth and accretion of mass in an astrophysical model. II, Appl. Math. (Warsaw), 23 (1995), 351-361. |
[6] |
P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model gravitational of particles. II, Colloq. Math., 67 (1994), 297-308. |
[7] |
M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse, Nonlinearity, 12 (1999), 1071-1098.
doi: 10.1088/0951-7715/12/4/320. |
[8] |
X.-Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball, J. Reine Angew. Math., 472 (1996), 17-51. |
[9] |
M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation, Adv. Differential Equations, 4 (1999), 163-196. |
[10] |
A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.
doi: 10.1512/iumj.1985.34.34025. |
[11] |
Y. Giga, N. Mizoguchi and T. Senba, Asymptotic behavior of type I blowup solutions to a parabolic-elliptic system of drift-diffusion type, Arch. Rational Mech. Anal., 201 (2011), 549-573.
doi: 10.1007/s00205-010-0394-7. |
[12] |
I. A. Guerra and M. A. Peletier, Self-similar blow-up for a diffusion-attraction problem, Nonlinearity, 17 (2004), 2137-2162.
doi: 10.1088/0951-7715/17/6/007. |
[13] |
P. Hartman, "Ordinary Differential Equations," John Wiley & Sons, Inc., New York-London-Sydney, 1964. |
[14] |
M. A. Herrero, E. Medina and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754.
doi: 10.1088/0951-7715/10/6/016. |
[15] |
M. A. Herrero, E. Medina and J. J. L. Velázquez, Self-similar blowup for a reaction-diffusion system, Journal of Computational and Applied Mathematics, 97 (1998), 99-119.
doi: 10.1016/S0377-0427(98)00104-6. |
[16] |
M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), 583-623.
doi: 10.1007/BF01445268. |
[17] |
M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. Math. Biol., 35 (1996), 177-194.
doi: 10.1007/s002850050049. |
[18] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[19] |
J. Matos, Convergence of blow-up solutions of nonlinear heat equations in the supercritical case, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 1197-1227.
doi: 10.1017/S0308210500019351. |
[20] |
N. Mizoguchi and T. Senba, A sufficient condition for type I blowup in a parabolic-elliptic system, J. Differential Equations, 250 (2011), 182-203.
doi: 10.1016/j.jde.2010.10.016. |
[21] |
T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601. |
[22] |
V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42 (1973), 63-105.
doi: 10.1016/0022-5193(73)90149-5. |
[23] |
T. Senba, Blowup behavior of radial solutions Jäger-Luckhaus system in high dimensional domains, Funkcial Ekvac., 48 (2005), 247-271.
doi: 10.1619/fesi.48.247. |
[24] |
T. Senba, Type II blowup of solutions to a simplified Keller-Segel system in two dimensional domains, Nonlinear Anal., 66 (2007), 1817-1839.
doi: 10.1016/j.na.2006.02.027. |
[25] |
T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations, 6 (2001), 21-50. |
[26] |
T. Suzuki, "Free Energy and Self-Interacting Particles," Progress in Nonlinear Differential Equations and their Applications, 62, Birkhäuser Boston, Inc., Boston, MA, 2005. |
[27] |
G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal., 119 (1992), 355-391.
doi: 10.1007/BF01837114. |
[28] |
G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math., 59 (1992), 251-272.
doi: 10.1007/BF02790230. |
show all references
References:
[1] |
S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96. |
[2] |
J. Bebernes and D. Eberly, A description of self-similar blow-up for dimensions $n \geq 3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 1-21. |
[3] |
P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. III, Colloq. Math., 68 (1995), 229-239. |
[4] |
P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math., 66 (1994), 319-334. |
[5] |
P. Biler and T. Nadzieja, Growth and accretion of mass in an astrophysical model. II, Appl. Math. (Warsaw), 23 (1995), 351-361. |
[6] |
P. Biler, D. Hilhorst and T. Nadzieja, Existence and nonexistence of solutions for a model gravitational of particles. II, Colloq. Math., 67 (1994), 297-308. |
[7] |
M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani, Diffusion, attraction and collapse, Nonlinearity, 12 (1999), 1071-1098.
doi: 10.1088/0951-7715/12/4/320. |
[8] |
X.-Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball, J. Reine Angew. Math., 472 (1996), 17-51. |
[9] |
M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation, Adv. Differential Equations, 4 (1999), 163-196. |
[10] |
A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.
doi: 10.1512/iumj.1985.34.34025. |
[11] |
Y. Giga, N. Mizoguchi and T. Senba, Asymptotic behavior of type I blowup solutions to a parabolic-elliptic system of drift-diffusion type, Arch. Rational Mech. Anal., 201 (2011), 549-573.
doi: 10.1007/s00205-010-0394-7. |
[12] |
I. A. Guerra and M. A. Peletier, Self-similar blow-up for a diffusion-attraction problem, Nonlinearity, 17 (2004), 2137-2162.
doi: 10.1088/0951-7715/17/6/007. |
[13] |
P. Hartman, "Ordinary Differential Equations," John Wiley & Sons, Inc., New York-London-Sydney, 1964. |
[14] |
M. A. Herrero, E. Medina and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity, 10 (1997), 1739-1754.
doi: 10.1088/0951-7715/10/6/016. |
[15] |
M. A. Herrero, E. Medina and J. J. L. Velázquez, Self-similar blowup for a reaction-diffusion system, Journal of Computational and Applied Mathematics, 97 (1998), 99-119.
doi: 10.1016/S0377-0427(98)00104-6. |
[16] |
M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), 583-623.
doi: 10.1007/BF01445268. |
[17] |
M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. Math. Biol., 35 (1996), 177-194.
doi: 10.1007/s002850050049. |
[18] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[19] |
J. Matos, Convergence of blow-up solutions of nonlinear heat equations in the supercritical case, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 1197-1227.
doi: 10.1017/S0308210500019351. |
[20] |
N. Mizoguchi and T. Senba, A sufficient condition for type I blowup in a parabolic-elliptic system, J. Differential Equations, 250 (2011), 182-203.
doi: 10.1016/j.jde.2010.10.016. |
[21] |
T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601. |
[22] |
V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42 (1973), 63-105.
doi: 10.1016/0022-5193(73)90149-5. |
[23] |
T. Senba, Blowup behavior of radial solutions Jäger-Luckhaus system in high dimensional domains, Funkcial Ekvac., 48 (2005), 247-271.
doi: 10.1619/fesi.48.247. |
[24] |
T. Senba, Type II blowup of solutions to a simplified Keller-Segel system in two dimensional domains, Nonlinear Anal., 66 (2007), 1817-1839.
doi: 10.1016/j.na.2006.02.027. |
[25] |
T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations, 6 (2001), 21-50. |
[26] |
T. Suzuki, "Free Energy and Self-Interacting Particles," Progress in Nonlinear Differential Equations and their Applications, 62, Birkhäuser Boston, Inc., Boston, MA, 2005. |
[27] |
G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal., 119 (1992), 355-391.
doi: 10.1007/BF01837114. |
[28] |
G. Wolansky, On the evolution of self-interacting clusters and applications to semilinear equations with exponential nonlinearity, J. Anal. Math., 59 (1992), 251-272.
doi: 10.1007/BF02790230. |
[1] |
Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013 |
[2] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[3] |
Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez. Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension. Communications on Pure and Applied Analysis, 2022, 21 (3) : 891-925. doi: 10.3934/cpaa.2022003 |
[4] |
Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313 |
[5] |
Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029 |
[6] |
Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47 |
[7] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[8] |
Juntang Ding, Chenyu Dong. Blow-up results of the positive solution for a weakly coupled quasilinear parabolic system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4173-4183. doi: 10.3934/dcdsb.2021222 |
[9] |
Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022075 |
[10] |
Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857 |
[11] |
Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897 |
[12] |
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703 |
[13] |
Giuseppe Maria Coclite, Helge Holden, Kenneth H. Karlsen. Wellposedness for a parabolic-elliptic system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 659-682. doi: 10.3934/dcds.2005.13.659 |
[14] |
Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683 |
[15] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[16] |
Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 |
[17] |
Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809 |
[18] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[19] |
Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809 |
[20] |
Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]