October  2012, 32(10): 3715-3732. doi: 10.3934/dcds.2012.32.3715

On stacked central configurations of the planar coorbital satellites problem

1. 

Núcleo de Formação Docente, Universidade Federal de Pernambuco, Caruaru-PE, CEP 55002-970, Brazil

2. 

Departamento de Matemática, Universidade Federal de Pernambuco, Recife-PE, CEP. 50540-740, Brazil

Received  March 2011 Revised  January 2012 Published  May 2012

In this work we look for central configurations of the planar $1+n$ body problem such that, after the addition of one or two satellites, we have a new planar central configuration. We determine all such configurations in two cases: the first, the addition of two satellites considering that all satellites have equal infinitesimal masses and the second case where one satellite is added but the infinitesimal masses are not necessarily equal.
Citation: Allyson Oliveira, Hildeberto Cabral. On stacked central configurations of the planar coorbital satellites problem. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3715-3732. doi: 10.3934/dcds.2012.32.3715
References:
[1]

A. Albouy and Y. Fu, Relative equilibria of four identical satellites, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 2633-2645. doi: 10.1098/rspa.2009.0115.

[2]

J. Casasayas, J. Llibre and A. Nunes, Central configurations of the planar $1+n$ body problem, Celestial Mech. Dynam. Astronom., 60 (1994), 273-288. doi: 10.1007/BF00693325.

[3]

M. Corbera, J. Cors and J. Llibre, On the central configurations of the planar $1+3$ body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 27-43. doi: 10.1007/s10569-010-9316-0.

[4]

J. Cors, J. Llibre and M. Ollé, Central configurations of the planar coorbital satellite problem, Celestial Mech. Dynam. Astronom., 89 (2004), 319-342. doi: 10.1023/B:CELE.0000043569.25307.ab.

[5]

Y. Hagihara, "Celestial Mechanics. Volume I: Dynamical Principles and Transformation Theory," The MIT Press, Cambridge, Mass.-London, 1970.

[6]

G. Hall, Central configuration in the planar $1 + n$ body problem, preprint, 1988.

[7]

M. Hampton, Stacked central configurations: New examples in the planar five-body problem, Nonlinearity, 18 (2005), 2299-2304. doi: 10.1088/0951-7715/18/5/021.

[8]

J. Llibre and L. Mello, New central configurations for the planar 5-body problem, Celestial Mech. Dynam. Astronom., 100 (2008), 141-149. doi: 10.1007/s10569-007-9107-4.

[9]

J. Maxwell, "On the Stability of Motion of Saturn's Rings," Macmillan & Co., London, 1985.

[10]

S. Renner and B. Sicardy, Stationary configurations for co-orbital satellites with small arbitrary masses, Celestial Mech. Dynam. Astronom., 88 (2004), 397-414. doi: 10.1023/B:CELE.0000023420.80881.67.

[11]

D. Saari, On the role and the properties of $n$-body central configurations, Celestial Mech., 21 (1980), 9-20. doi: 10.1007/BF01230241.

[12]

D. Saari, "Collisions, Rings, and Other Newtonian $N$-Body Problems," CBMS Regional Conference Series in Mathematics, 104, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2005.

[13]

A. Wintner, "The Analytical Foundations of Celestial Mechanics," Princeton Mathematical Series, 5, Princeton University Press, Princeton, NJ, 1941.

show all references

References:
[1]

A. Albouy and Y. Fu, Relative equilibria of four identical satellites, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 2633-2645. doi: 10.1098/rspa.2009.0115.

[2]

J. Casasayas, J. Llibre and A. Nunes, Central configurations of the planar $1+n$ body problem, Celestial Mech. Dynam. Astronom., 60 (1994), 273-288. doi: 10.1007/BF00693325.

[3]

M. Corbera, J. Cors and J. Llibre, On the central configurations of the planar $1+3$ body problem, Celestial Mech. Dynam. Astronom., 109 (2011), 27-43. doi: 10.1007/s10569-010-9316-0.

[4]

J. Cors, J. Llibre and M. Ollé, Central configurations of the planar coorbital satellite problem, Celestial Mech. Dynam. Astronom., 89 (2004), 319-342. doi: 10.1023/B:CELE.0000043569.25307.ab.

[5]

Y. Hagihara, "Celestial Mechanics. Volume I: Dynamical Principles and Transformation Theory," The MIT Press, Cambridge, Mass.-London, 1970.

[6]

G. Hall, Central configuration in the planar $1 + n$ body problem, preprint, 1988.

[7]

M. Hampton, Stacked central configurations: New examples in the planar five-body problem, Nonlinearity, 18 (2005), 2299-2304. doi: 10.1088/0951-7715/18/5/021.

[8]

J. Llibre and L. Mello, New central configurations for the planar 5-body problem, Celestial Mech. Dynam. Astronom., 100 (2008), 141-149. doi: 10.1007/s10569-007-9107-4.

[9]

J. Maxwell, "On the Stability of Motion of Saturn's Rings," Macmillan & Co., London, 1985.

[10]

S. Renner and B. Sicardy, Stationary configurations for co-orbital satellites with small arbitrary masses, Celestial Mech. Dynam. Astronom., 88 (2004), 397-414. doi: 10.1023/B:CELE.0000023420.80881.67.

[11]

D. Saari, On the role and the properties of $n$-body central configurations, Celestial Mech., 21 (1980), 9-20. doi: 10.1007/BF01230241.

[12]

D. Saari, "Collisions, Rings, and Other Newtonian $N$-Body Problems," CBMS Regional Conference Series in Mathematics, 104, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 2005.

[13]

A. Wintner, "The Analytical Foundations of Celestial Mechanics," Princeton Mathematical Series, 5, Princeton University Press, Princeton, NJ, 1941.

[1]

Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797

[2]

Martha Alvarez, Joaquin Delgado, Jaume Llibre. On the spatial central configurations of the 5--body problem and their bifurcations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 505-518. doi: 10.3934/dcdss.2008.1.505

[3]

Eduardo Piña. Computing collinear 4-Body Problem central configurations with given masses. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1215-1230. doi: 10.3934/dcds.2013.33.1215

[4]

Martin Swaczyna, Petr Volný. Uniform motions in central fields. Journal of Geometric Mechanics, 2017, 9 (1) : 91-130. doi: 10.3934/jgm.2017004

[5]

Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901

[6]

Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261

[7]

Carlos Garca-Azpeitia, Jorge Ize. Bifurcation of periodic solutions from a ring configuration of discrete nonlinear oscillators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 975-983. doi: 10.3934/dcdss.2013.6.975

[8]

Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012

[9]

Montserrat Corbera, Jaume Llibre. On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1049-1060. doi: 10.3934/dcds.2013.33.1049

[10]

Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial and Management Optimization, 2020, 16 (1) : 495-510. doi: 10.3934/jimo.2018164

[11]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[12]

Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009

[13]

Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238

[14]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

[15]

Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347

[16]

Balázs Boros, Josef Hofbauer, Stefan Müller, Georg Regensburger. Planar S-systems: Global stability and the center problem. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 707-727. doi: 10.3934/dcds.2019029

[17]

Guowei Yu. Periodic solutions of the planar N-center problem with topological constraints. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5131-5162. doi: 10.3934/dcds.2016023

[18]

Yuika Kajihara, Misturu Shibayama. Variational proof of the existence of brake orbits in the planar 2-center problem. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5785-5797. doi: 10.3934/dcds.2019254

[19]

Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35

[20]

P.K. Newton, M. Ruith, E. Upchurch. The constrained planar N-vortex problem: I. Integrability. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 137-152. doi: 10.3934/dcdsb.2005.5.137

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]