-
Previous Article
On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials
- DCDS Home
- This Issue
-
Next Article
On domain perturbation for super-linear Neumann problems and a question of Y. Lou, W-M Ni and L. Su
Anti-angiogenic therapy based on the binding to receptors
1. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tara s/n, 41012-Seville, Spain |
2. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tara s/n, 41012-Seville, Spain |
3. | Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, Univ. de Sevilla, C/. Tarfia s/n, 41012 - Sevilla |
References:
[1] |
H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions, in "New Developments in Differential Equations" (Proc. 2$^nd$ Scheveningen Conf., Scheveningen, 1975) (ed. W. Eckhaus), North-Holland Math. Studies, 21, North-Holland, Amsterdam, (1976), 43-63. |
[2] |
H. Amann, Maximum principles and principal eigenvalues, in "Ten Mathematical Essays on Approximation in Analysis and Topology" (eds. J. Ferrera, J. López-Gómez and F. R. Ruíz del Portal), Elsevier B. V., Amsterdam, (2005), 1-60. |
[3] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Function Spaces, Differential Operators and Nonlinear Analysis" (Friedrichroda, 1992) (eds. H. J. Schmeisser and H. Triebel), Teubner-Texte Math., 133, Teubner, Stuttgart, (1993), 9-126. |
[4] |
A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857-899.
doi: 10.1006/bulm.1998.0042. |
[5] |
H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.
doi: 10.1002/cpa.3160470105. |
[6] |
S. Cano-Casanova and J. López-Gómez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Differential Equations, 178 (2002), 123-211.
doi: 10.1006/jdeq.2000.4003. |
[7] |
R. S. Cantrell and C. Cosner, "Spatial Ecology Via Reaction-Diffusion Equations," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. |
[8] |
M. A. J. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumor development, Math. Comput. Modelling, 23 (1996), 47-87.
doi: 10.1016/0895-7177(96)00019-2. |
[9] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340. |
[10] |
M. Delgado, I. Gayte, C. Morales-Rodrigo and A. Suárez, An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary, Nonlinear Anal., 72 (2010), 330-347.
doi: 10.1016/j.na.2009.06.057. |
[11] |
M. Delgado, C. Morales-Rodrigo, A. Suárez and J. I. Tello, On a parabolic-elliptic chemotactic model with coupled boundary conditions, Nonlinear Analysis RWA, 11 (2010), 3884-3902.
doi: 10.1016/j.nonrwa.2010.02.016. |
[12] |
M. Delgado and A. Suárez, Study of an elliptic system arising from angiogenesis with chemotaxis and flux at the boundary, J. Differential Equations, 244 (2008), 3119-3150.
doi: 10.1016/j.jde.2007.12.007. |
[13] |
J. Dyson, E. Sánchez, R. Villella-Bressan and G. Webb, An age and spatially structured model of tumor invasion with haptotaxis, Discrete Contin. Dyn. Syst. Ser B, 8 (2007), 45-60. |
[14] |
H. Enderling, A. R. A. Anderson, M. A. J. Chaplain, A. J. Munro and J. S. Vaidya, Mathematical modelling of radiotherapy strategies for early breast cancer, J. Theor. Biol., 241 (2006), 158-171.
doi: 10.1016/j.jtbi.2005.11.015. |
[15] |
H. Enderling, M. A. J. Chaplain, A. R. A. Anderson and J. S. Vaidya, A mathematical model of breast cancer development, local treatment and recurrence, J. Theor. Biol., 246 (2007), 245-259.
doi: 10.1016/j.jtbi.2006.12.010. |
[16] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.
doi: 10.1137/S0036141001385046. |
[17] |
J. García-Melián, J. D. Rossi and J. Sabina de Lis, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions, Comm. Comtemporary Math. 11 (2009), 585-613. |
[18] |
D. Henry, "Geometric Theory Of Semilinear Parabolic Equations," Lecture Notes Math., 840, Springer-Verlag, Berlin-New York, 1981. |
[19] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[20] |
H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., 42 (2001), 195-238.
doi: 10.1007/s002850000037. |
[21] |
J. López-Gómez, Nonlinear eigenvalues and global bifurcation: Application to the search of positive solutions for general Lotka-Volterra reaction-diffusion systems with two species, Diff. Int. Eqns., 7 (1994), 1427-1452. |
[22] |
J. López-Gómez, Classifying smooth supersolutions for a general class of elliptic boundary value problems, Adv. Diff. Eqns., 8 (2003), 1025-1042. |
[23] |
N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis, J. Math. Bio., 49 (2004), 111-187.
doi: 10.1007/s00285-003-0262-2. |
[24] |
C. Walker and G. Webb, Global existence of classical solutions for a haptotaxis model,, SIAM J. Math. Anal., 38 (): 1694.
|
[25] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
show all references
References:
[1] |
H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions, in "New Developments in Differential Equations" (Proc. 2$^nd$ Scheveningen Conf., Scheveningen, 1975) (ed. W. Eckhaus), North-Holland Math. Studies, 21, North-Holland, Amsterdam, (1976), 43-63. |
[2] |
H. Amann, Maximum principles and principal eigenvalues, in "Ten Mathematical Essays on Approximation in Analysis and Topology" (eds. J. Ferrera, J. López-Gómez and F. R. Ruíz del Portal), Elsevier B. V., Amsterdam, (2005), 1-60. |
[3] |
H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Function Spaces, Differential Operators and Nonlinear Analysis" (Friedrichroda, 1992) (eds. H. J. Schmeisser and H. Triebel), Teubner-Texte Math., 133, Teubner, Stuttgart, (1993), 9-126. |
[4] |
A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857-899.
doi: 10.1006/bulm.1998.0042. |
[5] |
H. Berestycki, L. Nirenberg and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math., 47 (1994), 47-92.
doi: 10.1002/cpa.3160470105. |
[6] |
S. Cano-Casanova and J. López-Gómez, Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems, J. Differential Equations, 178 (2002), 123-211.
doi: 10.1006/jdeq.2000.4003. |
[7] |
R. S. Cantrell and C. Cosner, "Spatial Ecology Via Reaction-Diffusion Equations," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. |
[8] |
M. A. J. Chaplain, Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modelling of the stages of tumor development, Math. Comput. Modelling, 23 (1996), 47-87.
doi: 10.1016/0895-7177(96)00019-2. |
[9] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340. |
[10] |
M. Delgado, I. Gayte, C. Morales-Rodrigo and A. Suárez, An angiogenesis model with nonlinear chemotactic response and flux at the tumor boundary, Nonlinear Anal., 72 (2010), 330-347.
doi: 10.1016/j.na.2009.06.057. |
[11] |
M. Delgado, C. Morales-Rodrigo, A. Suárez and J. I. Tello, On a parabolic-elliptic chemotactic model with coupled boundary conditions, Nonlinear Analysis RWA, 11 (2010), 3884-3902.
doi: 10.1016/j.nonrwa.2010.02.016. |
[12] |
M. Delgado and A. Suárez, Study of an elliptic system arising from angiogenesis with chemotaxis and flux at the boundary, J. Differential Equations, 244 (2008), 3119-3150.
doi: 10.1016/j.jde.2007.12.007. |
[13] |
J. Dyson, E. Sánchez, R. Villella-Bressan and G. Webb, An age and spatially structured model of tumor invasion with haptotaxis, Discrete Contin. Dyn. Syst. Ser B, 8 (2007), 45-60. |
[14] |
H. Enderling, A. R. A. Anderson, M. A. J. Chaplain, A. J. Munro and J. S. Vaidya, Mathematical modelling of radiotherapy strategies for early breast cancer, J. Theor. Biol., 241 (2006), 158-171.
doi: 10.1016/j.jtbi.2005.11.015. |
[15] |
H. Enderling, M. A. J. Chaplain, A. R. A. Anderson and J. S. Vaidya, A mathematical model of breast cancer development, local treatment and recurrence, J. Theor. Biol., 246 (2007), 245-259.
doi: 10.1016/j.jtbi.2006.12.010. |
[16] |
M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355.
doi: 10.1137/S0036141001385046. |
[17] |
J. García-Melián, J. D. Rossi and J. Sabina de Lis, Existence and uniqueness of positive solutions to elliptic problems with sublinear mixed boundary conditions, Comm. Comtemporary Math. 11 (2009), 585-613. |
[18] |
D. Henry, "Geometric Theory Of Semilinear Parabolic Equations," Lecture Notes Math., 840, Springer-Verlag, Berlin-New York, 1981. |
[19] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[20] |
H. A. Levine, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis, J. Math. Biol., 42 (2001), 195-238.
doi: 10.1007/s002850000037. |
[21] |
J. López-Gómez, Nonlinear eigenvalues and global bifurcation: Application to the search of positive solutions for general Lotka-Volterra reaction-diffusion systems with two species, Diff. Int. Eqns., 7 (1994), 1427-1452. |
[22] |
J. López-Gómez, Classifying smooth supersolutions for a general class of elliptic boundary value problems, Adv. Diff. Eqns., 8 (2003), 1025-1042. |
[23] |
N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis, J. Math. Bio., 49 (2004), 111-187.
doi: 10.1007/s00285-003-0262-2. |
[24] |
C. Walker and G. Webb, Global existence of classical solutions for a haptotaxis model,, SIAM J. Math. Anal., 38 (): 1694.
|
[25] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[1] |
Maciej Leszczyński, Urszula Ledzewicz, Heinz Schättler. Optimal control for a mathematical model for anti-angiogenic treatment with Michaelis-Menten pharmacodynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2315-2334. doi: 10.3934/dcdsb.2019097 |
[2] |
Filippo Cacace, Valerio Cusimano, Alfredo Germani, Pasquale Palumbo, Federico Papa. Closed-loop control of tumor growth by means of anti-angiogenic administration. Mathematical Biosciences & Engineering, 2018, 15 (4) : 827-839. doi: 10.3934/mbe.2018037 |
[3] |
Nasser Sweilam, Fathalla Rihan, Seham AL-Mekhlafi. A fractional-order delay differential model with optimal control for cancer treatment based on synergy between anti-angiogenic and immune cell therapies. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2403-2424. doi: 10.3934/dcdss.2020120 |
[4] |
Cristian Morales-Rodrigo. A therapy inactivating the tumor angiogenic factors. Mathematical Biosciences & Engineering, 2013, 10 (1) : 185-198. doi: 10.3934/mbe.2013.10.185 |
[5] |
Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5281-5304. doi: 10.3934/dcdsb.2020343 |
[6] |
Reihaneh Mostolizadeh, Zahra Afsharnezhad, Anna Marciniak-Czochra. Mathematical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence of cytokine. Numerical Algebra, Control and Optimization, 2018, 8 (1) : 63-80. doi: 10.3934/naco.2018004 |
[7] |
Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063 |
[8] |
John D. Nagy, Dieter Armbruster. Evolution of uncontrolled proliferation and the angiogenic switch in cancer. Mathematical Biosciences & Engineering, 2012, 9 (4) : 843-876. doi: 10.3934/mbe.2012.9.843 |
[9] |
Urszula Ledzewicz, James Munden, Heinz Schättler. Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 415-438. doi: 10.3934/dcdsb.2009.12.415 |
[10] |
Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565 |
[11] |
Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453 |
[12] |
Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127 |
[13] |
Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469 |
[14] |
Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022 |
[15] |
Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6825-6842. doi: 10.3934/dcds.2019233 |
[16] |
Rachid Ouifki, Gareth Witten. A model of HIV-1 infection with HAART therapy and intracellular delays. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 229-240. doi: 10.3934/dcdsb.2007.8.229 |
[17] |
Avner Friedman, Xiulan Lai. Antagonism and negative side-effects in combination therapy for cancer. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2237-2250. doi: 10.3934/dcdsb.2019093 |
[18] |
Ben Sheller, Domenico D'Alessandro. Analysis of a cancer dormancy model and control of immuno-therapy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1037-1053. doi: 10.3934/mbe.2015.12.1037 |
[19] |
Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 945-967. doi: 10.3934/dcdsb.2013.18.945 |
[20] |
Sophia R-J Jang, Hsiu-Chuan Wei. On a mathematical model of tumor-immune system interactions with an oncolytic virus therapy. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3261-3295. doi: 10.3934/dcdsb.2021184 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]