• Previous Article
    Characterization of turing diffusion-driven instability on evolving domains
  • DCDS Home
  • This Issue
  • Next Article
    On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials
November  2012, 32(11): 3957-3974. doi: 10.3934/dcds.2012.32.3957

Longtime behavior of solutions to chemotaxis-proliferation model with three variables

1. 

Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan

2. 

Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871

Received  May 2011 Revised  August 2011 Published  June 2012

In this paper, we construct a global solution to a mathematical model presented by Murray [18] and investigate longtime behavior of solution. For any initial profile, the solution is proven to tend to a homogeneous stationary solution as $t \rightarrow \infty$. This result is highly congruent with the prediction in [18] which is said that the solution would tend to zero as $t \rightarrow \infty$.
Citation: Doan Duy Hai, Atsushi Yagi. Longtime behavior of solutions to chemotaxis-proliferation model with three variables. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3957-3974. doi: 10.3934/dcds.2012.32.3957
References:
[1]

M. Aida, "Global Behaviour of Solutions and Pattern Formation for Chemotaxis-Growth Equations," (in Japanese), Ph.D thesis, Osaka University, 2003.

[2]

M. Aida and A. Yagi, Target pattern solutions for chemotaxis-growth system, Sci. Math. Jpn., 59 (2004), 577-590.

[3]

M. Aida, M. Efendiev and A. Yagi, Quasilinear abstract parabolic evolution equations and exponential attractors, Osaka J. Math., 42 (2005), 101-132.

[4]

M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of attractor dimension for chemotaxis growth system, J. London Math. Soc. (2), 74 (2006), 453-474. doi: 10.1112/S0024610706023015.

[5]

A. V. Babin and M. I. Vishik, Attractors of evolution equations, "Nauka," Moscow, 1989; English translation, North-Holland, Amsterdam, 1992.

[6]

A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications," Applied Mathematical Sciences, 151, Springer-Verlag, Berlin, 2002.

[7]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications," Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

[8]

E. O. Budrene and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633. doi: 10.1038/349630a0.

[9]

E. O. Budrene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 630-633.

[10]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Physical Origins and Classical Methods," With the collaboration of Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky and Hélène Lanchon, Translated from the French by Ian N. Sneddon, With a preface by Jean Teillac, Springer-Verlag, Berlin, 1990.

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations," RAM: Research in Applied Mathematics, 37, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.

[12]

M. Efendiev and A. Yagi, Continuous dependence on a parameter of exponential attractors for chemotaxis-growth system, J. Math. Soc. Japan, 57 (2005), 167-181. doi: 10.2969/jmsj/1160745820.

[13]

M. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors for non-autonomous dissipative systems, J. Math. Soc. Japan, 63 (2011), 647-673. doi: 10.2969/jmsj/06320647.

[14]

D. D. Hai and A. Yagi, Numerical computations and pattern formation for chemotaxis-growth model, Sci. Math. Jpn., 70 (2009), 205-211.

[15]

E. F. Keller and L. A. Segel, Initiation of slime mould aggregation viewed as instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[16]

M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, 230 (1996), 499-543. doi: 10.1016/0378-4371(96)00051-9.

[17]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in "Handbook of Differential Equations: Evolutionary Equations," Vol. 4 (eds. C. M. Dafermos and M. Pokorný), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, (2008), 103-200.

[18]

J. D. Murray, "Mathematical Biology II: Spacial Models and Biomedical Applications," 3$^rd$ edition, Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.

[19]

K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X.

[20]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984.

[21]

M. Renardy and C. Rogers, "An Introduction to Partial Differential Equations," Springer, Berlin, 1992.

[22]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2$^nd$ edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

[23]

D. E. Woodward, R. Tyson, M. R. Myerscough, J. D. Murray, E. O. Budrene and H. C. Berg, Spatio-temporal patterns generated by Salmonella typhimurium, Biophysical J., 68 (1995), 2181-2189. doi: 10.1016/S0006-3495(95)80400-5.

[24]

A. Yagi, "Abstract Parabolic Evolution Equations and their Applications," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.

show all references

References:
[1]

M. Aida, "Global Behaviour of Solutions and Pattern Formation for Chemotaxis-Growth Equations," (in Japanese), Ph.D thesis, Osaka University, 2003.

[2]

M. Aida and A. Yagi, Target pattern solutions for chemotaxis-growth system, Sci. Math. Jpn., 59 (2004), 577-590.

[3]

M. Aida, M. Efendiev and A. Yagi, Quasilinear abstract parabolic evolution equations and exponential attractors, Osaka J. Math., 42 (2005), 101-132.

[4]

M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of attractor dimension for chemotaxis growth system, J. London Math. Soc. (2), 74 (2006), 453-474. doi: 10.1112/S0024610706023015.

[5]

A. V. Babin and M. I. Vishik, Attractors of evolution equations, "Nauka," Moscow, 1989; English translation, North-Holland, Amsterdam, 1992.

[6]

A. Bensoussan and J. Frehse, "Regularity Results for Nonlinear Elliptic Systems and Applications," Applied Mathematical Sciences, 151, Springer-Verlag, Berlin, 2002.

[7]

H. Brezis, "Analyse Fonctionnelle. Théorie et Applications," Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.

[8]

E. O. Budrene and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633. doi: 10.1038/349630a0.

[9]

E. O. Budrene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 630-633.

[10]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 1, Physical Origins and Classical Methods," With the collaboration of Philippe Bénilan, Michel Cessenat, André Gervat, Alain Kavenoky and Hélène Lanchon, Translated from the French by Ian N. Sneddon, With a preface by Jean Teillac, Springer-Verlag, Berlin, 1990.

[11]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations," RAM: Research in Applied Mathematics, 37, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.

[12]

M. Efendiev and A. Yagi, Continuous dependence on a parameter of exponential attractors for chemotaxis-growth system, J. Math. Soc. Japan, 57 (2005), 167-181. doi: 10.2969/jmsj/1160745820.

[13]

M. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors for non-autonomous dissipative systems, J. Math. Soc. Japan, 63 (2011), 647-673. doi: 10.2969/jmsj/06320647.

[14]

D. D. Hai and A. Yagi, Numerical computations and pattern formation for chemotaxis-growth model, Sci. Math. Jpn., 70 (2009), 205-211.

[15]

E. F. Keller and L. A. Segel, Initiation of slime mould aggregation viewed as instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[16]

M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, 230 (1996), 499-543. doi: 10.1016/0378-4371(96)00051-9.

[17]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in "Handbook of Differential Equations: Evolutionary Equations," Vol. 4 (eds. C. M. Dafermos and M. Pokorný), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, (2008), 103-200.

[18]

J. D. Murray, "Mathematical Biology II: Spacial Models and Biomedical Applications," 3$^rd$ edition, Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.

[19]

K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X.

[20]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984.

[21]

M. Renardy and C. Rogers, "An Introduction to Partial Differential Equations," Springer, Berlin, 1992.

[22]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2$^nd$ edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

[23]

D. E. Woodward, R. Tyson, M. R. Myerscough, J. D. Murray, E. O. Budrene and H. C. Berg, Spatio-temporal patterns generated by Salmonella typhimurium, Biophysical J., 68 (1995), 2181-2189. doi: 10.1016/S0006-3495(95)80400-5.

[24]

A. Yagi, "Abstract Parabolic Evolution Equations and their Applications," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.

[1]

Messoud A. Efendiev, Sergey Zelik, Hermann J. Eberl. Existence and longtime behavior of a biofilm model. Communications on Pure and Applied Analysis, 2009, 8 (2) : 509-531. doi: 10.3934/cpaa.2009.8.509

[2]

M. Grasselli, Vittorino Pata. Longtime behavior of a homogenized model in viscoelastodynamics. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 339-358. doi: 10.3934/dcds.1998.4.339

[3]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1

[4]

Meng Zhao. The longtime behavior of the model with nonlocal diffusion and free boundaries in online social networks. Electronic Research Archive, 2020, 28 (3) : 1143-1160. doi: 10.3934/era.2020063

[5]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[6]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[7]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[8]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness and asymptotic behavior of solutions for a quasilinear chemotaxis model of multiple sclerosis with nonlinear signal secretion. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022118

[9]

M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337

[10]

Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091

[11]

Georges Chamoun, Moustafa Ibrahim, Mazen Saad, Raafat Talhouk. Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4165-4188. doi: 10.3934/dcdsb.2020092

[12]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[13]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[14]

Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084

[15]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure and Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[16]

Zhijian Yang, Ke Li. Longtime dynamics for an elastic waveguide model. Conference Publications, 2013, 2013 (special) : 797-806. doi: 10.3934/proc.2013.2013.797

[17]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[18]

Lan Huang, Zhiying Sun, Xin-Guang Yang, Alain Miranville. Global behavior for the classical solution of compressible viscous micropolar fluid with cylinder symmetry. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1595-1620. doi: 10.3934/cpaa.2022033

[19]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[20]

Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]