\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a double penalized Smectic-A model

Abstract Related Papers Cited by
  • In smectic-A liquid crystals, a unity director vector $\boldsymbol{n}$ appear modeling an average preferential direction of the molecules and also the normal vector of the layer configuration. In the E's model [5], the Ginzburg-Landau penalization related to the constraint $|\boldsymbol{n}|=1$ is considered and, assuming the constraint $\nabla\times \boldsymbol{n}=0$, $\boldsymbol{n}$ is replaced by the so-called layer variable $\varphi$ such that $\boldsymbol{n}=\nabla\varphi$.
        In this paper, a double penalized problem is introduced related to a smectic-A liquid crystal flows, considering a Cahn-Hilliard system to model the behavior of $\boldsymbol{n}$. Then, the issue of the global in time behavior of solutions is attacked, including the proof of the convergence of the whole trajectory towards a unique equilibrium state.
    Mathematics Subject Classification: Primary: 76A15; Secondary: 35A35, 35Q35, 35K30, 76D05, 76A10, 76D03.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. Partial Differential Equations, 1 (1993), 123-148.doi: 10.1007/BF01191614.

    [2]

    B. Climent-Ezquerra, F. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model, Nonlinear Analysis, 71 (2009), 539-549

    [3]

    B. Climent-Ezquerra, F. Guillén-González and M. A. Rodrĺguez Bellido, Stability for nematic liquid crystals with stretching terms, International Journal of Bifurcations and Chaos, 20 (2010), 2937-2942.doi: 10.1142/S0218127410027477.

    [4]

    B. Climent-Ezquerra and F. Guillén-González, Global in time solutions and time-periodicity for a Smectic-A liquid crystal model, Communications on Pure and Applied Analysis, 9 (2010), 1473-1493.doi: 10.3934/cpaa.2010.9.1473.

    [5]

    W. E, Nonlinear continuum theory of smectic-A liquid crystals, Arch. Rat. Mech. Anal., 137 (1997), 159-175.doi: 10.1007/s002050050026.

    [6]

    M. Grasselli and H. WuLong-time behavior for a nematic liquid crystal model with asymptotic stabilizing boundary condition and external force, preprint.

    [7]

    F. H. Lin and C. Liu, Non-parabolic dissipative systems modelling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.doi: 10.1002/cpa.3160480503.

    [8]

    C. Liu, Dynamic Theory for Incompressible Smectic Liquid Crystals: Existence and Regularity, Discrete and Continuous Dynamical Systems, 6 (2000), 591-608.doi: 10.3934/dcds.2000.6.591.

    [9]

    A. Segatti and H. WuFinite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows, preprint, arXiv:1011.0358.

    [10]

    H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete and Continuous Dynamical System, 26 (2010), 379-396.doi: 10.3934/dcds.2010.26.379.

    [11]

    S. Zheng, "Nonlinear Evolution Equations," Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 133, Chapman & Hall/CRC, Boca Raton, FL, 2004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(56) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return