• Previous Article
    Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$
  • DCDS Home
  • This Issue
  • Next Article
    Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics
December  2012, 32(12): 4229-4246. doi: 10.3934/dcds.2012.32.4229

Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla

2. 

LANI, UFR SAT, Université Gaston Berger, Saint-Louis, BP 234, Senegal

Received  July 2010 Revised  May 2012 Published  August 2012

In this paper, we study a conditional long-time stable fully discrete finite element scheme for a Ginzburg-Landau model for nematic liquid crystal flow. We also obtain its time asymptotic convergence (when number of time steps go to infinity, fixed time step and mesh size) towards a unique critical point of the elastic energy subject to the finite element subspace. Finally, we estimate some convergence rates towards this limit critical point. To prove convergence of the whole sequence, a Lojasiewicz type inequality is used.
    Moreover, we extend these results to other schemes given in [3] and [10].
Citation: Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229
References:
[1]

R. A. Adams, "Sobolev Spaces,'' Academic Press, New York, 1975.

[2]

S. Bartels and A. Prohl, Constraint preserving implicit finite element discretization of harmonic map heat flow into spheres, Math. Comp., 76 (2007), 1847-1859. doi: 10.1090/S0025-5718-07-02026-1.

[3]

R. Becker, X. Feng and A. Prohl, Finite element approximations of the Ericken-Leslie model for nematic liquid crystal flow, SIAM J. Numer. Anal., 46 (2008), 1704-1731. doi: 10.1137/07068254X.

[4]

B. Climent-Ezquerra, F. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model, Nonlinear Analysis, 71 (2009), 539-549. doi: 10.1016/j.na.2008.10.092.

[5]

B. Climent-Ezquerra, F. Guillén-González and M. A. Rodríguez-Bellido, Stability for nematic liquid crystal with stretching terms, International Journal of Bifurcation and Chaos, 20 (2010), 2937-2942. doi: 10.1142/S0218127410027477.

[6]

J. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica., 21 (1967), 381-392.

[7]

V. Girault and R. A. Raviart, "Finite Element Approximation for Navier-Stokes Equations: Theory and Algorithms,'' Springer, Berlin, Heidelberg, New York, 1981.

[8]

M. Grasseli, H. Wu and S. Zheng, Convergence to equilibrium for parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations, SIAM J. Math. Anal., 40 (2009), 2007-2033. doi: 10.1137/080717833.

[9]

M. Grasseli, H. Petzeltová and G. Schimperna, Asymptotic behaviour of a nonisothermal viscous Cahn-Hilliard equation with inertial term, J. Diff. Equ., 239 (2007), 38-60. doi: 10.1016/j.jde.2007.05.003.

[10]

F. Guillén-González and J. V. Gutiérrez-Santacreu, A linearmixed finite element scheme for a nematic Eriksen-Leslie liquidcrystal model,, Submitted., (). 

[11]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.

[12]

F. H. Lin and C. Liu, Nonparabolic dissipative systemsmodeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.

[13]

C. Liu and N. J. Walkington, Approximation of liquid crystal flows, SIAM J. Numer. Anal., 37 (2000), 725-741. doi: 10.1137/S0036142998344512.

[14]

C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows, M2AN Math. Model. Numer., 36 (2002), 205-222. doi: 10.1051/m2an:2002010.

[15]

C. Liu, H. Wu and X. Xu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties,, preprint, (). 

[16]

S. Lojasiewicz, Une propriotopologique des sous-ensembles analytiques rls, In "Les Equations aux Divs Partielles (Paris 1962)'' Editions du Centre National de la Recherche Scientifique, Paris, (1963), 87-89.

[17]

S. Lojasiewicz, Ensemble semi-analytiques, I. H. E. S. Notes, 1965.

[18]

B. Merlet and M. Pierre, Convergence to equilibrium for the Backward Euler Scheme and Applications, Comm. Pure Appl. Anal., 9 (2010), 685-702.

[19]

L. Simon, Asymptotics for a class of non-linear evolution equations with applications to geometric problems, Ann. Of Math., 118 (1983), 525-571. doi: 10.2307/2006981.

[20]

H. Wu, Long time Behaviour for Nonlinear Hydrodynamic System modeling the Nematic Liquid Cristal Flows, Discrete and Contin. Dyn. Syst., 26 (2010), 379-396. doi: 10.3934/dcds.2010.26.379.

[21]

H. Wu, M. Grasseli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase field system with dynamical boundary condition, J. Maht. Anal. Appl., 329 (2007), 948-976. doi: 10.1016/j.jmaa.2006.07.011.

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,'' Academic Press, New York, 1975.

[2]

S. Bartels and A. Prohl, Constraint preserving implicit finite element discretization of harmonic map heat flow into spheres, Math. Comp., 76 (2007), 1847-1859. doi: 10.1090/S0025-5718-07-02026-1.

[3]

R. Becker, X. Feng and A. Prohl, Finite element approximations of the Ericken-Leslie model for nematic liquid crystal flow, SIAM J. Numer. Anal., 46 (2008), 1704-1731. doi: 10.1137/07068254X.

[4]

B. Climent-Ezquerra, F. Guillén-González and M. J. Moreno-Iraberte, Regularity and time-periodicity for a nematic liquid crystal model, Nonlinear Analysis, 71 (2009), 539-549. doi: 10.1016/j.na.2008.10.092.

[5]

B. Climent-Ezquerra, F. Guillén-González and M. A. Rodríguez-Bellido, Stability for nematic liquid crystal with stretching terms, International Journal of Bifurcation and Chaos, 20 (2010), 2937-2942. doi: 10.1142/S0218127410027477.

[6]

J. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica., 21 (1967), 381-392.

[7]

V. Girault and R. A. Raviart, "Finite Element Approximation for Navier-Stokes Equations: Theory and Algorithms,'' Springer, Berlin, Heidelberg, New York, 1981.

[8]

M. Grasseli, H. Wu and S. Zheng, Convergence to equilibrium for parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations, SIAM J. Math. Anal., 40 (2009), 2007-2033. doi: 10.1137/080717833.

[9]

M. Grasseli, H. Petzeltová and G. Schimperna, Asymptotic behaviour of a nonisothermal viscous Cahn-Hilliard equation with inertial term, J. Diff. Equ., 239 (2007), 38-60. doi: 10.1016/j.jde.2007.05.003.

[10]

F. Guillén-González and J. V. Gutiérrez-Santacreu, A linearmixed finite element scheme for a nematic Eriksen-Leslie liquidcrystal model,, Submitted., (). 

[11]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283. doi: 10.1007/BF00251810.

[12]

F. H. Lin and C. Liu, Nonparabolic dissipative systemsmodeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537. doi: 10.1002/cpa.3160480503.

[13]

C. Liu and N. J. Walkington, Approximation of liquid crystal flows, SIAM J. Numer. Anal., 37 (2000), 725-741. doi: 10.1137/S0036142998344512.

[14]

C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows, M2AN Math. Model. Numer., 36 (2002), 205-222. doi: 10.1051/m2an:2002010.

[15]

C. Liu, H. Wu and X. Xu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties,, preprint, (). 

[16]

S. Lojasiewicz, Une propriotopologique des sous-ensembles analytiques rls, In "Les Equations aux Divs Partielles (Paris 1962)'' Editions du Centre National de la Recherche Scientifique, Paris, (1963), 87-89.

[17]

S. Lojasiewicz, Ensemble semi-analytiques, I. H. E. S. Notes, 1965.

[18]

B. Merlet and M. Pierre, Convergence to equilibrium for the Backward Euler Scheme and Applications, Comm. Pure Appl. Anal., 9 (2010), 685-702.

[19]

L. Simon, Asymptotics for a class of non-linear evolution equations with applications to geometric problems, Ann. Of Math., 118 (1983), 525-571. doi: 10.2307/2006981.

[20]

H. Wu, Long time Behaviour for Nonlinear Hydrodynamic System modeling the Nematic Liquid Cristal Flows, Discrete and Contin. Dyn. Syst., 26 (2010), 379-396. doi: 10.3934/dcds.2010.26.379.

[21]

H. Wu, M. Grasseli and S. Zheng, Convergence to equilibrium for a parabolic-hyperbolic phase field system with dynamical boundary condition, J. Maht. Anal. Appl., 329 (2007), 948-976. doi: 10.1016/j.jmaa.2006.07.011.

[1]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[2]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[3]

Eid Wassim, Yueqiang Shang. Local and parallel finite element algorithms for the incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022022

[4]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[5]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[6]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[7]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[8]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[9]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[10]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[11]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[12]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[13]

Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109

[14]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[15]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[16]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[17]

Mouhamadou Samsidy Goudiaby, Ababacar Diagne, Leon Matar Tine. Longtime behavior of a second order finite element scheme simulating the kinematic effects in liquid crystal dynamics. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3499-3514. doi: 10.3934/cpaa.2021116

[18]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[19]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[20]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (0)

[Back to Top]