\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Decay of solutions for a system of nonlinear Schrödinger equations in 2D

Abstract Related Papers Cited by
  • We deal with a system of nonlinear Schrödinger equations with quadratic nonlinearities in two space dimensions. We prove $\mathbf{L}^{\infty }-$time decay estimates of small solutions. We also discuss existence and nonexistence of wave operators.
    Mathematics Subject Classification: Primary: 35Q55; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Cazenave, "Semilinear Schödinger Equations," Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp.

    [2]

    S. Cohn, Global existence for the nonresonant Schrödinger equation in two space dimensions, Canad. Appl. Math. Quart., 2 (1994), 247-282.

    [3]

    M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differential Integral Equations, 17 (2004), 297-330.

    [4]

    M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.doi: 10.1016/j.anihpc.2009.01.011.

    [5]

    V. Georgiev, Global solution of the system of wave and Klein-Gordon equations, Math. Z., 203 (1990), 683-698.doi: 10.1007/BF02570764.

    [6]

    J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n\geq 2$, Commun. Math. Phys., 151 (1993), 619-645.doi: 10.1007/BF02097031.

    [7]

    N. Hayashi, Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J., 60 (1990), 717-727.doi: 10.1215/S0012-7094-90-06029-6.

    [8]

    N. Hayashi, Global and almost global solutions to quadratic nonlinear Schrödinger equations with small initial data, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 109-129.

    [9]

    N. Hayashi, C. Li and P. I. Naumkin, On a system of nonlinear Schrödinger equations in 2d, Differential Integral Equations, 24 (2011), 417-434.

    [10]

    N. Hayashi, C. Li and P. I. Naumkin, Modified wave operator for a system of nonlinear Schrödinger equations in 2d, Comm. Partial Differential Equations, 37 (2012), 947-968.

    [11]

    N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differential Equations and Applications - DEA, 3 (2011), 415-426.

    [12]

    N. Hayashi and P. I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math., 120 (1998), 369-389.doi: 10.1353/ajm.1998.0011.

    [13]

    N. Hayashi and P. I. Naumkin, On the quadratic nonlinear Schrödinger equation in three space dimensions, Internat. Math. Res. Notices, 3 (2000), 115-132.

    [14]

    N. Hayashi and P. I. Naumkin, Global existence of small solutions to the quadratic nonlinear Schrödinger equations in two space dimensions, SIAM J. Math. Anal., 32 (2001), 1390-1403.doi: 10.1137/S0036141000372532.

    [15]

    N. Hayashi and P. I. Naumkin, Asymptotics in time of solutions to nonlinear Schrödinger equations in two space dimensions, Funkcial. Ekvac., 49 (2006), 415-425.doi: 10.1619/fesi.49.415.

    [16]

    N. Hayashi, P. I. Naumkin, A. Shimomura and S. Tonegawa, Modified wave operators for nonlinear Schrödinger equations in one and two dimensions, Electron. J. Differential Equations, (2004), 62, 16pp.

    [17]

    N. Hayashi and T. Ozawa, Scattering theory in the weighted $\mathbfL^2$( Rn) spaces for some Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 48 (1988), 17-37.

    [18]

    Y. Kawahara and H. Sunagawa, Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance , J. Differential Equations, 251 (2011), 2549-2567.doi: 10.1016/j.jde.2011.04.001.

    [19]

    S. Katayama, T. Ozawa and H. SunagawaA note on the null condition for quadratic nonlinear Klein-Gordon systems in two space dimensions, to appear in Comm. Pure Appl. Math., arXiv:1105.1952.

    [20]

    S. Klainerman, Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal., 78 (1982), 73-98.doi: 10.1007/BF00253225.

    [21]

    K. Moriyama, S. Tonegawa and Y. Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math., 5 (2003), 983-996.

    [22]

    T. Ozawa, Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac., 38 (1995), 217-232.

    [23]

    T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.doi: 10.1007/s00526-005-0349-2.

    [24]

    J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46 (1982), 409-425.doi: 10.1016/0022-0396(82)90102-4.

    [25]

    A. Shimomura, Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335.

    [26]

    A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423.doi: 10.1080/03605300600910316.

    [27]

    A. Shimomura and S. Tonegawa, Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions Differential integral Equations, 17 (2004),127-150.

    [28]

    J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696.doi: 10.1002/cpa.3160380516.

    [29]

    W. Strauss, Nonlinear scattering at low energy, J. Funct. Anal., 43 (1981), 281-293.doi: 10.1016/0022-1236(81)90019-7.

    [30]

    H. Sunagawa, On global small amplitude solutions to systems of cubic nonlinear klein-Gordon equations with different mass terms in one space dimension, J. Differential Equations, 192 (2003), 308-325.doi: 10.1016/S0022-0396(03)00125-6.

    [31]

    Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return