Citation: |
[1] |
T. Cazenave, "Semilinear Schödinger Equations," Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp. |
[2] |
S. Cohn, Global existence for the nonresonant Schrödinger equation in two space dimensions, Canad. Appl. Math. Quart., 2 (1994), 247-282. |
[3] |
M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interactions, Differential Integral Equations, 17 (2004), 297-330. |
[4] |
M. Colin, T. Colin and M. Ohta, Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2211-2226.doi: 10.1016/j.anihpc.2009.01.011. |
[5] |
V. Georgiev, Global solution of the system of wave and Klein-Gordon equations, Math. Z., 203 (1990), 683-698.doi: 10.1007/BF02570764. |
[6] |
J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n\geq 2$, Commun. Math. Phys., 151 (1993), 619-645.doi: 10.1007/BF02097031. |
[7] |
N. Hayashi, Global existence of small analytic solutions to nonlinear Schrödinger equations, Duke Math. J., 60 (1990), 717-727.doi: 10.1215/S0012-7094-90-06029-6. |
[8] |
N. Hayashi, Global and almost global solutions to quadratic nonlinear Schrödinger equations with small initial data, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 109-129. |
[9] |
N. Hayashi, C. Li and P. I. Naumkin, On a system of nonlinear Schrödinger equations in 2d, Differential Integral Equations, 24 (2011), 417-434. |
[10] |
N. Hayashi, C. Li and P. I. Naumkin, Modified wave operator for a system of nonlinear Schrödinger equations in 2d, Comm. Partial Differential Equations, 37 (2012), 947-968. |
[11] |
N. Hayashi, C. Li and T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, Differential Equations and Applications - DEA, 3 (2011), 415-426. |
[12] |
N. Hayashi and P. I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math., 120 (1998), 369-389.doi: 10.1353/ajm.1998.0011. |
[13] |
N. Hayashi and P. I. Naumkin, On the quadratic nonlinear Schrödinger equation in three space dimensions, Internat. Math. Res. Notices, 3 (2000), 115-132. |
[14] |
N. Hayashi and P. I. Naumkin, Global existence of small solutions to the quadratic nonlinear Schrödinger equations in two space dimensions, SIAM J. Math. Anal., 32 (2001), 1390-1403.doi: 10.1137/S0036141000372532. |
[15] |
N. Hayashi and P. I. Naumkin, Asymptotics in time of solutions to nonlinear Schrödinger equations in two space dimensions, Funkcial. Ekvac., 49 (2006), 415-425.doi: 10.1619/fesi.49.415. |
[16] |
N. Hayashi, P. I. Naumkin, A. Shimomura and S. Tonegawa, Modified wave operators for nonlinear Schrödinger equations in one and two dimensions, Electron. J. Differential Equations, (2004), 62, 16pp. |
[17] |
N. Hayashi and T. Ozawa, Scattering theory in the weighted $\mathbfL^2$( Rn) spaces for some Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 48 (1988), 17-37. |
[18] |
Y. Kawahara and H. Sunagawa, Global small amplitude solutions for two-dimensional nonlinear Klein-Gordon systems in the presence of mass resonance , J. Differential Equations, 251 (2011), 2549-2567.doi: 10.1016/j.jde.2011.04.001. |
[19] |
S. Katayama, T. Ozawa and H. Sunagawa, A note on the null condition for quadratic nonlinear Klein-Gordon systems in two space dimensions, to appear in Comm. Pure Appl. Math., arXiv:1105.1952. |
[20] |
S. Klainerman, Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal., 78 (1982), 73-98.doi: 10.1007/BF00253225. |
[21] |
K. Moriyama, S. Tonegawa and Y. Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two space dimensions, Commun. Contemp. Math., 5 (2003), 983-996. |
[22] |
T. Ozawa, Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac., 38 (1995), 217-232. |
[23] |
T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.doi: 10.1007/s00526-005-0349-2. |
[24] |
J. Shatah, Global existence of small solutions to nonlinear evolution equations, J. Differential Equations, 46 (1982), 409-425.doi: 10.1016/0022-0396(82)90102-4. |
[25] |
A. Shimomura, Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions, Differential Integral Equations, 18 (2005), 325-335. |
[26] |
A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423.doi: 10.1080/03605300600910316. |
[27] |
A. Shimomura and S. Tonegawa, Long-range scattering for nonlinear Schrödinger equations in one and two space dimensions Differential integral Equations, 17 (2004),127-150. |
[28] |
J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696.doi: 10.1002/cpa.3160380516. |
[29] |
W. Strauss, Nonlinear scattering at low energy, J. Funct. Anal., 43 (1981), 281-293.doi: 10.1016/0022-1236(81)90019-7. |
[30] |
H. Sunagawa, On global small amplitude solutions to systems of cubic nonlinear klein-Gordon equations with different mass terms in one space dimension, J. Differential Equations, 192 (2003), 308-325.doi: 10.1016/S0022-0396(03)00125-6. |
[31] |
Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125. |