-
Previous Article
Free path of billiards with flat points
- DCDS Home
- This Issue
-
Next Article
A metric proof of the converse Lyapunov theorem for semicontinuous multivalued dynamics
Variational destruction of invariant circles
1. | Department of Mathematics, Nanjing University, No. 22 Hankou Road, Nanjing, 210093, China |
References:
[1] |
V. Bangert, Mather sets for twist maps and geodesics ontori, Dynamics Reported, 1 (1988), 1-56. |
[2] |
G. Forni, Analytic destruction of invariant circles, Ergod. Th. & Dynam. Sys., 14 (1994), 267-298. |
[3] |
M. R. Herman, Sur la conjugation différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES, 49 (1979), 5-233.
doi: 10.1007/BF02684798. |
[4] |
M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Astérisque, 103-104 (1983), 1-221. |
[5] |
M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Astérisque, 144 (1986), 1-248. |
[6] |
J. N. Mather, Existence of quasi periodic orbits for twist homeomorphisms of the annulus, Topology, 21 (1982), 457-467.
doi: 10.1016/0040-9383(82)90023-4. |
[7] |
J. N. Mather, A criterion for the non-existence of invariant circle, Publ. Math. IHES, 63 (1986), 153-204.
doi: 10.1007/BF02831625. |
[8] |
J. N. Mather, Modulus of continuity for Peierls's barrier, Periodic Solutions of Hamiltonian Systems and Related Topics, NATO ASI Series C, 209, Reidel, Dordrecht, (1987), 177-202. |
[9] |
J. N. Mather, Destruction of invariant circles, Ergod. Th. & Dynam. Sys., 8 (1988), 199-214. |
[10] |
D. Salamon, The Kolmogorov-Arnold-Moser theorem, Math. Phys. Eletron. J., 10 (2004), Paper 3, 37 pp. (electronic). |
show all references
References:
[1] |
V. Bangert, Mather sets for twist maps and geodesics ontori, Dynamics Reported, 1 (1988), 1-56. |
[2] |
G. Forni, Analytic destruction of invariant circles, Ergod. Th. & Dynam. Sys., 14 (1994), 267-298. |
[3] |
M. R. Herman, Sur la conjugation différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES, 49 (1979), 5-233.
doi: 10.1007/BF02684798. |
[4] |
M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Astérisque, 103-104 (1983), 1-221. |
[5] |
M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Astérisque, 144 (1986), 1-248. |
[6] |
J. N. Mather, Existence of quasi periodic orbits for twist homeomorphisms of the annulus, Topology, 21 (1982), 457-467.
doi: 10.1016/0040-9383(82)90023-4. |
[7] |
J. N. Mather, A criterion for the non-existence of invariant circle, Publ. Math. IHES, 63 (1986), 153-204.
doi: 10.1007/BF02831625. |
[8] |
J. N. Mather, Modulus of continuity for Peierls's barrier, Periodic Solutions of Hamiltonian Systems and Related Topics, NATO ASI Series C, 209, Reidel, Dordrecht, (1987), 177-202. |
[9] |
J. N. Mather, Destruction of invariant circles, Ergod. Th. & Dynam. Sys., 8 (1988), 199-214. |
[10] |
D. Salamon, The Kolmogorov-Arnold-Moser theorem, Math. Phys. Eletron. J., 10 (2004), Paper 3, 37 pp. (electronic). |
[1] |
Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091 |
[2] |
Michel Laurent, Arnaldo Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 2018, 12: 175-191. doi: 10.3934/jmd.2018007 |
[3] |
Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399 |
[4] |
Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems and Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599 |
[5] |
Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977 |
[6] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[7] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[8] |
Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597 |
[9] |
Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341 |
[10] |
C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 613-631. doi: 10.3934/naco.2020058 |
[11] |
Shigenori Matsumoto. A generic-dimensional property of the invariant measures for circle diffeomorphisms. Journal of Modern Dynamics, 2013, 7 (4) : 553-563. doi: 10.3934/jmd.2013.7.553 |
[12] |
Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335 |
[13] |
Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007 |
[14] |
Ayache Benhadid, Fateh Merahi. Complexity analysis of an interior-point algorithm for linear optimization based on a new parametric kernel function with a double barrier term. Numerical Algebra, Control and Optimization, 2022 doi: 10.3934/naco.2022003 |
[15] |
Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255 |
[16] |
Laurent Imbert, Michael J. Jacobson, Jr., Arthur Schmidt. Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications, 2010, 4 (2) : 237-260. doi: 10.3934/amc.2010.4.237 |
[17] |
Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101 |
[18] |
Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407 |
[19] |
Fawwaz Batayneh, Cecilia González-Tokman. On the number of invariant measures for random expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5887-5914. doi: 10.3934/dcds.2021100 |
[20] |
Jan Bouwe van den Berg, Gabriel William Duchesne, Jean-Philippe Lessard. Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach. Journal of Computational Dynamics, 2022, 9 (2) : 253-278. doi: 10.3934/jcd.2022005 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]