February  2012, 32(2): 487-497. doi: 10.3934/dcds.2012.32.487

Pressures for asymptotically sub-additive potentials under a mistake function

1. 

Department of Applied Mathematics, Chinese Culture University, Yangmingshan, Taipei, 11114, Taiwan

2. 

Department of Mathematics, Soochow University, Suzhou 215006, Jiangsu, China

3. 

Department of Mathematics, Suzhou University, Suzhou 215006, Jiangsu

Received  September 2010 Revised  November 2010 Published  September 2011

This paper defines the pressure for asymptotically sub-additive potentials under a mistake function, including the measure-theoretical and the topological versions. Using the advanced techniques of ergodic theory and topological dynamics, we reveal a variational principle for the new defined topological pressure without any additional conditions on the potentials and the compact metric space.
Citation: Wen-Chiao Cheng, Yun Zhao, Yongluo Cao. Pressures for asymptotically sub-additive potentials under a mistake function. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 487-497. doi: 10.3934/dcds.2012.32.487
References:
[1]

L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Th. Dynam. Syst., 16 (1996), 871-927. doi: 10.1017/S0143385700010117.

[2]

L. M. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures, Discrete Continuous Dynam. Systems, 16 (2006), 279-305.

[3]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture notes in Math., 470, Springer-Verlag, Berlin, 1975.

[4]

R. Bowen, Hausdorff dimension of quasicircles, Inst. Haustes Études Sci. Publ. Math., 50 (1979), 11-25.

[5]

Y. Cao, D. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Continuous Dynam. Systems A, 20 (2008), 639-657.

[6]

K. Falconer, A sub-additive thermodynamic formalism for mixing repellers, J. Phys. A, 21 (1988), L737-L742. doi: 10.1088/0305-4470/21/14/005.

[7]

D. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Commun. Math. Phys., 297 (2010), 1-43. doi: 10.1007/s00220-010-1031-x.

[8]

L. He, J. Lv and L. Zhou, Definition of measure-theoretic pressure using spanning sets, Acta Math. Sinica, Engl. Ser., 20 (2004), 709-718. doi: 10.1007/s10114-004-0368-5.

[9]

A. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphisms, Publ. IHES, 51 (1980), 137-173.

[10]

A. Katok and B. Hasselblatt, "An Introduction to the Modern Theory of Dynamical Systems," Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, Cambridge, 1995.

[11]

A. Mummert, The thermodynamic formalism for almost-additive sequences, Discrete Continuous Dynam. Systems A, 16 (2006), 435-454.

[12]

Y. Pesin and B. Pitskel', Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen., 18 (1984), 50-63, 96. doi: 10.1007/BF01083692.

[13]

Y. Pesin, Dimension type characteristics for invariant sets of dynamical systems, Russian Math. Surveys, 43 (1988), 111-151. doi: 10.1070/RM1988v043n04ABEH001892.

[14]

Y. Pesin, "Dimension Theory in Dynamical Systems, Contemporary Views and Applications," University of Chicago Press, Chicago, 1997.

[15]

C. Pfister and W. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007), 929-956. doi: 10.1017/S0143385706000824.

[16]

C. Pfister and W. Sullivan, Large deviations estimates for dynamical systems without the specification property. Application to the $\beta$-shifts, Nonlinearity, 18 (2005), 237-261.

[17]

D. Ruelle, Statistical mechanics on a compact set with $Z^{\upsilon}$ action satisfying expansiveness and specification, Trans. Amer. Math. Soc., 187 (1973), 237-251. doi: 10.2307/1996437.

[18]

D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Encyclopedia of Mathematics and its Applications, 5. Addison-Wesley Publishing Co., Reading Mass., 1978.

[19]

D. Thompson, Irregular sets, the $\beta-$transformation and the almost specification property, preprint, arXiv:0905.0739v1.

[20]

P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

[21]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971. doi: 10.2307/2373682.

[22]

G. Zhang, Variational principles of pressure, Discrete Continuous Dynam. Systems A, 24 (2009), 1409-1435.

[23]

Y. Zhao and Y. Cao, Measure-theoretic pressure for subadditive potentials, Nonlinear Analysis, 70 (2009), 2237-2247. doi: 10.1016/j.na.2008.03.003.

[24]

Y. Zhao, L. Zhang and Y. Cao, The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials, Nonlinear Analysis, 74 (2011), 5015-5022.

show all references

References:
[1]

L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Th. Dynam. Syst., 16 (1996), 871-927. doi: 10.1017/S0143385700010117.

[2]

L. M. Barreira, Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures, Discrete Continuous Dynam. Systems, 16 (2006), 279-305.

[3]

R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lecture notes in Math., 470, Springer-Verlag, Berlin, 1975.

[4]

R. Bowen, Hausdorff dimension of quasicircles, Inst. Haustes Études Sci. Publ. Math., 50 (1979), 11-25.

[5]

Y. Cao, D. Feng and W. Huang, The thermodynamic formalism for sub-additive potentials, Discrete Continuous Dynam. Systems A, 20 (2008), 639-657.

[6]

K. Falconer, A sub-additive thermodynamic formalism for mixing repellers, J. Phys. A, 21 (1988), L737-L742. doi: 10.1088/0305-4470/21/14/005.

[7]

D. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Commun. Math. Phys., 297 (2010), 1-43. doi: 10.1007/s00220-010-1031-x.

[8]

L. He, J. Lv and L. Zhou, Definition of measure-theoretic pressure using spanning sets, Acta Math. Sinica, Engl. Ser., 20 (2004), 709-718. doi: 10.1007/s10114-004-0368-5.

[9]

A. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphisms, Publ. IHES, 51 (1980), 137-173.

[10]

A. Katok and B. Hasselblatt, "An Introduction to the Modern Theory of Dynamical Systems," Encyclopedia of Mathematics and Its Applications, 54, Cambridge University Press, Cambridge, 1995.

[11]

A. Mummert, The thermodynamic formalism for almost-additive sequences, Discrete Continuous Dynam. Systems A, 16 (2006), 435-454.

[12]

Y. Pesin and B. Pitskel', Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen., 18 (1984), 50-63, 96. doi: 10.1007/BF01083692.

[13]

Y. Pesin, Dimension type characteristics for invariant sets of dynamical systems, Russian Math. Surveys, 43 (1988), 111-151. doi: 10.1070/RM1988v043n04ABEH001892.

[14]

Y. Pesin, "Dimension Theory in Dynamical Systems, Contemporary Views and Applications," University of Chicago Press, Chicago, 1997.

[15]

C. Pfister and W. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007), 929-956. doi: 10.1017/S0143385706000824.

[16]

C. Pfister and W. Sullivan, Large deviations estimates for dynamical systems without the specification property. Application to the $\beta$-shifts, Nonlinearity, 18 (2005), 237-261.

[17]

D. Ruelle, Statistical mechanics on a compact set with $Z^{\upsilon}$ action satisfying expansiveness and specification, Trans. Amer. Math. Soc., 187 (1973), 237-251. doi: 10.2307/1996437.

[18]

D. Ruelle, "Thermodynamic Formalism. The Mathematical Structures of Classical Equilibrium Statistical Mechanics," Encyclopedia of Mathematics and its Applications, 5. Addison-Wesley Publishing Co., Reading Mass., 1978.

[19]

D. Thompson, Irregular sets, the $\beta-$transformation and the almost specification property, preprint, arXiv:0905.0739v1.

[20]

P. Walters, "An Introduction to Ergodic Theory," Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

[21]

P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971. doi: 10.2307/2373682.

[22]

G. Zhang, Variational principles of pressure, Discrete Continuous Dynam. Systems A, 24 (2009), 1409-1435.

[23]

Y. Zhao and Y. Cao, Measure-theoretic pressure for subadditive potentials, Nonlinear Analysis, 70 (2009), 2237-2247. doi: 10.1016/j.na.2008.03.003.

[24]

Y. Zhao, L. Zhang and Y. Cao, The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials, Nonlinear Analysis, 74 (2011), 5015-5022.

[1]

Xiaojun Huang, Zhiqiang Li, Yunhua Zhou. A variational principle of topological pressure on subsets for amenable group actions. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2687-2703. doi: 10.3934/dcds.2020146

[2]

Marc Rauch. Variational principles for the topological pressure of measurable potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 367-394. doi: 10.3934/dcdss.2017018

[3]

Guohua Zhang. Variational principles of pressure. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409

[4]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545

[5]

Yongluo Cao, De-Jun Feng, Wen Huang. The thermodynamic formalism for sub-additive potentials. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 639-657. doi: 10.3934/dcds.2008.20.639

[6]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[7]

Rafael Alcaraz Barrera. Topological and ergodic properties of symmetric sub-shifts. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4459-4486. doi: 10.3934/dcds.2014.34.4459

[8]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[9]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[10]

Le Yin, Ioannis Sgouralis, Vasileios Maroulas. Topological reconstruction of sub-cellular motion with Ensemble Kalman velocimetry. Foundations of Data Science, 2020, 2 (2) : 101-121. doi: 10.3934/fods.2020007

[11]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Topological equivalence of some variational problems involving distances. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 247-258. doi: 10.3934/dcds.2001.7.247

[12]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[13]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

[14]

Zheng Yin, Ercai Chen. Conditional variational principle for the irregular set in some nonuniformly hyperbolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6581-6597. doi: 10.3934/dcds.2016085

[15]

Zheng Yin, Ercai Chen. The conditional variational principle for maps with the pseudo-orbit tracing property. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 463-481. doi: 10.3934/dcds.2019019

[16]

Xianfeng Ma, Ercai Chen. Pre-image variational principle for bundle random dynamical systems. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 957-972. doi: 10.3934/dcds.2009.23.957

[17]

Fuzhi Li, Dongmei Xu. Asymptotically autonomous dynamics for non-autonomous stochastic $ g $-Navier-Stokes equation with additive noise. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022087

[18]

Suleyman Tek. Some classes of surfaces in $\mathbb{R}^3$ and $\M_3$ arising from soliton theory and a variational principle. Conference Publications, 2009, 2009 (Special) : 761-770. doi: 10.3934/proc.2009.2009.761

[19]

James Nolen, Jack Xin. Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1217-1234. doi: 10.3934/dcds.2005.13.1217

[20]

Andrew M. Zimmer. Compact asymptotically harmonic manifolds. Journal of Modern Dynamics, 2012, 6 (3) : 377-403. doi: 10.3934/jmd.2012.6.377

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]