Citation: |
[1] |
H. Beirão da Veiga, Long time behavior for one-dimensional motion of a general barotropic viscous fluid, Arch. Ration. Mech. Anal., 108 (1989), 141-160. |
[2] |
Blanca Climent-Ezquerra, Francisco Guillén-González and Marko Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. angew. Math. Phys., 57 (2006), 984-998.doi: 10.1007/s00033-005-0038-1. |
[3] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.doi: 10.1002/cpa.3160350604. |
[4] |
H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Equa., 190 (2003), 504-523. |
[5] |
H. J. Choe and H. Kim, Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fuids, Math. Meth. Appl. Sci., 28 (2005), 1-28.doi: 10.1002/mma.545. |
[6] |
S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Continuous Dynam. Systems B, 15 (2011), 357-371. |
[7] |
J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.doi: 10.1007/BF00253358. |
[8] |
P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech. doi: 10.1007/s00021-009-0006-1. |
[9] |
S. Jiang, On initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas, J. Diff. Equa., 110 (1994), 157-181.doi: 10.1006/jdeq.1994.1064. |
[10] |
A. V. Kazhikhov, Stabilization of solutions of an initial-boundary-value problem for the equations of motion of a barotropic viscous fluid, Differ. Equ., 15 (1979), 463-467. |
[11] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence RI, 1967. |
[12] |
F. Leslie, Some constitutive equations for anisotropic fluids, Q. J. Mech. Appl. Math., 19 (1966), 357-370.doi: 10.1093/qjmam/19.3.357. |
[13] |
F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.doi: 10.1002/cpa.3160420605. |
[14] |
F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.doi: 10.1002/cpa.3160480503. |
[15] |
F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156.doi: 10.1007/s002050000102. |
[16] |
F.-H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dynam. Systems, 2 (1996), 1-22. |
[17] |
F.-H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.doi: 10.1007/s00205-009-0278-x. |
[18] |
C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows, Math. Modeling and Numer. Anal., 36 (2002), 205-222.doi: 10.1051/m2an:2002010. |
[19] |
T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.doi: 10.1137/S0036141097331044. |
[20] |
M. Okada, Free boundary value problems for the equation of one-dimensional motion of viscous gas, Japan J. Appl. Math., 6 (1989), 161-177.doi: 10.1007/BF03167921. |
[21] |
J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of vecocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.doi: 10.1137/0521061. |