Advanced Search
Article Contents
Article Contents

Compressible hydrodynamic flow of liquid crystals in 1-D

Abstract Related Papers Cited by
  • We consider a simplified version of Ericksen-Leslie equation modeling the compressible hydrodynamic flow of nematic liquid crystals in dimension one. If the initial data $(\rho_0, u_0,n_0)\in C^{1,\alpha}(I)\times C^{2,\alpha}(I)\times C^{2,\alpha}(I, S^2)$ and $\rho_0\ge c_0>0$, then we obtain both existence and uniqueness of global classical solutions. For $0\le\rho_0\in H^1(I)$ and $(u_0, n_0)\in H^1(I)\times H^2(I,S^2)$, we obtain both existence and uniqueness of global strong solutions.
    Mathematics Subject Classification: Primary: 35K55, 76N10.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Beirão da Veiga, Long time behavior for one-dimensional motion of a general barotropic viscous fluid, Arch. Ration. Mech. Anal., 108 (1989), 141-160.


    Blanca Climent-Ezquerra, Francisco Guillén-González and Marko Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. angew. Math. Phys., 57 (2006), 984-998.doi: 10.1007/s00033-005-0038-1.


    L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.doi: 10.1002/cpa.3160350604.


    H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Equa., 190 (2003), 504-523.


    H. J. Choe and H. Kim, Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fuids, Math. Meth. Appl. Sci., 28 (2005), 1-28.doi: 10.1002/mma.545.


    S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Continuous Dynam. Systems B, 15 (2011), 357-371.


    J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.doi: 10.1007/BF00253358.


    P. GermainWeak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech. doi: 10.1007/s00021-009-0006-1.


    S. Jiang, On initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas, J. Diff. Equa., 110 (1994), 157-181.doi: 10.1006/jdeq.1994.1064.


    A. V. Kazhikhov, Stabilization of solutions of an initial-boundary-value problem for the equations of motion of a barotropic viscous fluid, Differ. Equ., 15 (1979), 463-467.


    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence RI, 1967.


    F. Leslie, Some constitutive equations for anisotropic fluids, Q. J. Mech. Appl. Math., 19 (1966), 357-370.doi: 10.1093/qjmam/19.3.357.


    F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.doi: 10.1002/cpa.3160420605.


    F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.doi: 10.1002/cpa.3160480503.


    F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156.doi: 10.1007/s002050000102.


    F.-H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dynam. Systems, 2 (1996), 1-22.


    F.-H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.doi: 10.1007/s00205-009-0278-x.


    C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows, Math. Modeling and Numer. Anal., 36 (2002), 205-222.doi: 10.1051/m2an:2002010.


    T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.doi: 10.1137/S0036141097331044.


    M. Okada, Free boundary value problems for the equation of one-dimensional motion of viscous gas, Japan J. Appl. Math., 6 (1989), 161-177.doi: 10.1007/BF03167921.


    J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of vecocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.doi: 10.1137/0521061.

  • 加载中

Article Metrics

HTML views() PDF downloads(153) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint