-
Previous Article
Genus and braid index associated to sequences of renormalizable Lorenz maps
- DCDS Home
- This Issue
-
Next Article
On some geometry of propagation in diffractive time scales
Compressible hydrodynamic flow of liquid crystals in 1-D
1. | Department of Mathematics, South China Normal University, Guangzhou, Guangdong 510631 |
2. | Department of Mathematics, South China University of Technology, Guangzhou, 510640, China |
3. | Department of Mathematics, University of Kentucky, Lexington, KY 40513 |
4. | School of Mathematical Sciences, South China Normal University, Guangzhou, 510631 |
References:
[1] |
H. Beirão da Veiga, Long time behavior for one-dimensional motion of a general barotropic viscous fluid, Arch. Ration. Mech. Anal., 108 (1989), 141-160. |
[2] |
Blanca Climent-Ezquerra, Francisco Guillén-González and Marko Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. angew. Math. Phys., 57 (2006), 984-998.
doi: 10.1007/s00033-005-0038-1. |
[3] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[4] |
H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Equa., 190 (2003), 504-523. |
[5] |
H. J. Choe and H. Kim, Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fuids, Math. Meth. Appl. Sci., 28 (2005), 1-28.
doi: 10.1002/mma.545. |
[6] |
S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Continuous Dynam. Systems B, 15 (2011), 357-371. |
[7] |
J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.
doi: 10.1007/BF00253358. |
[8] |
P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., ().
doi: 10.1007/s00021-009-0006-1. |
[9] |
S. Jiang, On initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas, J. Diff. Equa., 110 (1994), 157-181.
doi: 10.1006/jdeq.1994.1064. |
[10] |
A. V. Kazhikhov, Stabilization of solutions of an initial-boundary-value problem for the equations of motion of a barotropic viscous fluid, Differ. Equ., 15 (1979), 463-467. |
[11] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence RI, 1967. |
[12] |
F. Leslie, Some constitutive equations for anisotropic fluids, Q. J. Mech. Appl. Math., 19 (1966), 357-370.
doi: 10.1093/qjmam/19.3.357. |
[13] |
F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.
doi: 10.1002/cpa.3160420605. |
[14] |
F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[15] |
F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156.
doi: 10.1007/s002050000102. |
[16] |
F.-H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dynam. Systems, 2 (1996), 1-22. |
[17] |
F.-H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x. |
[18] |
C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows, Math. Modeling and Numer. Anal., 36 (2002), 205-222.
doi: 10.1051/m2an:2002010. |
[19] |
T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.
doi: 10.1137/S0036141097331044. |
[20] |
M. Okada, Free boundary value problems for the equation of one-dimensional motion of viscous gas, Japan J. Appl. Math., 6 (1989), 161-177.
doi: 10.1007/BF03167921. |
[21] |
J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of vecocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061. |
show all references
References:
[1] |
H. Beirão da Veiga, Long time behavior for one-dimensional motion of a general barotropic viscous fluid, Arch. Ration. Mech. Anal., 108 (1989), 141-160. |
[2] |
Blanca Climent-Ezquerra, Francisco Guillén-González and Marko Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. angew. Math. Phys., 57 (2006), 984-998.
doi: 10.1007/s00033-005-0038-1. |
[3] |
L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.
doi: 10.1002/cpa.3160350604. |
[4] |
H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids, J. Diff. Equa., 190 (2003), 504-523. |
[5] |
H. J. Choe and H. Kim, Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fuids, Math. Meth. Appl. Sci., 28 (2005), 1-28.
doi: 10.1002/mma.545. |
[6] |
S. J. Ding, C. Y. Wang and H. Y. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Continuous Dynam. Systems B, 15 (2011), 357-371. |
[7] |
J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.
doi: 10.1007/BF00253358. |
[8] |
P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system,, J. Math. Fluid Mech., ().
doi: 10.1007/s00021-009-0006-1. |
[9] |
S. Jiang, On initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas, J. Diff. Equa., 110 (1994), 157-181.
doi: 10.1006/jdeq.1994.1064. |
[10] |
A. V. Kazhikhov, Stabilization of solutions of an initial-boundary-value problem for the equations of motion of a barotropic viscous fluid, Differ. Equ., 15 (1979), 463-467. |
[11] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence RI, 1967. |
[12] |
F. Leslie, Some constitutive equations for anisotropic fluids, Q. J. Mech. Appl. Math., 19 (1966), 357-370.
doi: 10.1093/qjmam/19.3.357. |
[13] |
F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.
doi: 10.1002/cpa.3160420605. |
[14] |
F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[15] |
F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156.
doi: 10.1007/s002050000102. |
[16] |
F.-H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, Discrete Contin. Dynam. Systems, 2 (1996), 1-22. |
[17] |
F.-H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x. |
[18] |
C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows, Math. Modeling and Numer. Anal., 36 (2002), 205-222.
doi: 10.1051/m2an:2002010. |
[19] |
T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.
doi: 10.1137/S0036141097331044. |
[20] |
M. Okada, Free boundary value problems for the equation of one-dimensional motion of viscous gas, Japan J. Appl. Math., 6 (1989), 161-177.
doi: 10.1007/BF03167921. |
[21] |
J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of vecocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061. |
[1] |
Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110 |
[2] |
Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357 |
[3] |
Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757 |
[4] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[5] |
Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165 |
[6] |
Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445 |
[7] |
Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211 |
[8] |
Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007 |
[9] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565 |
[10] |
Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623 |
[11] |
Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 |
[12] |
Tong Tang, Yongfu Wang. Strong solutions to compressible barotropic viscoelastic flow with vacuum. Kinetic and Related Models, 2015, 8 (4) : 765-775. doi: 10.3934/krm.2015.8.765 |
[13] |
Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341 |
[14] |
Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106 |
[15] |
Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106 |
[16] |
Tomás Caraballo, Cecilia Cavaterra. A 3D isothermal model for nematic liquid crystals with delay terms. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022097 |
[17] |
Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681 |
[18] |
Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379 |
[19] |
Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303 |
[20] |
Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]