Citation: |
[1] |
J. Birman and R. F. Williams, Knotted periodic orbits in dynamical systems. I. Lorenz's equations, Topology, 22 (1983), 47-82.doi: 10.1016/0040-9383(83)90045-9. |
[2] |
L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one-dimensional maps, in "Global Theory of Dynamical Systems" (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Mathematics, 819, Springer, Berlin, (1980), 18-34. |
[3] |
W. de Melo and M. Martens, Universal models for Lorenz maps, Ergod. Th and Dynam. Sys., 21 (2001), 833-860. |
[4] |
W. de Melo and S. van Strien, "One-Dimensional Dynamics," Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 25, Springer-Verlag, Berlin, 1993. |
[5] |
J. Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Am. Math. Soc., 303 (1987), 97-108.doi: 10.1090/S0002-9947-1987-0896009-2. |
[6] |
R. Ghrist, P. Holmes and M. Sullivan, "Knots and Links in Three-Dimensional Flows," Lecture Notes in Mathematics, 1654, Springer-Verlag, Berlin, 1997. |
[7] |
P. Holmes, Knotted periodic orbits in suspensions of Smale's horseshoe: Period multiplyind and cabled knots, Physica D, 21 (1986), 7-41. |
[8] |
L. Silva and J. Sousa Ramos, Topological invariants and renormalization of Lorenz maps, Phys. D, 162 (2002), 233-243. |
[9] |
M. St. Pierre, Topological and measurable dynamics of Lorenz maps, Dissertationes Mathematicae (Rozprawy Matematyczne), 382 (1999), 134 pp. |
[10] |
S. Waddington, Asymptotic formulae for Lorenz and horseshoe knots, Comm. Math. Phys., 176 (1996), 273-305.doi: 10.1007/BF02099550. |
[11] |
R. Williams, The structure of Lorenz attractors, Publ. Math. I.H.E.S., 50 (1979), 73-99.doi: 10.1007/BF02684770. |
[12] |
R. Williams, The structure of Lorenz attractors, "Turbulence Seminar" (eds. A. Chorin, J. Marsden and S. Smale) (Univ. Calif., Berkeley, Calif., 1976/1977), Lecture Notes in Mathematics, 615, Springer, Berlin, (1977), 94-112. |