\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation

Abstract Related Papers Cited by
  • This paper is concerned with the Cauchy problem of three-dimensional modified Navier-Stokes equations with fractional dissipation $ \nu (-\Delta)^{\alpha} u$. The results are three-fold. We first prove the global existence of weak solutions for $0<\alpha\leq1 $ and global smooth solution for $\frac{3}{4}<\alpha\leq1.$ Second, we obtain the optimal decay rates of both weak solutions and the higher-order derivative of the smooth solution. Finally, we investigate the asymptotic stability of the large solution to the system under large initial and external forcing perturbation.
    Mathematics Subject Classification: 35Q30, 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Caraballo, J. Real and P. E. Kloeden, Unique strong solutions and V-attractors of a three dimensional system of globally modified Navier-Stokes equations, Advanced Nonlinear Studies, 6 (2006), 411-436.

    [2]

    T. Caraballo, P. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete and Continuous Dynamical Systems Series B, 10 (2008), 761-781.

    [3]

    P. Constantin, "Near Identity Transformations for the Navier-Stokes Equations," Handbook of Mathematical Fluid Dynamics, North-Holland, Amstermdam, II 2003, 117-141.

    [4]

    J.-Y. Chemin, "Perfect Incompressible Fluids," New York: Oxford University Press 1998.

    [5]

    B.-Q. Dong and Z.-M. Chen, Asymptotic stability of the critical and super-critical dissipative quasi-geostrophic equation, Nonlinearity, 19 (2006), 2919-2928.doi: 10.1088/0951-7715/19/12/011.

    [6]

    B.-Q. Dong and Z.-M. Chen, Asymptotic profiles of solutions to the 2D viscous incompressible micropolar fluid flows, Discrete and Continuous Dynamical Systems, 23 (2009), 765-784.

    [7]

    B.-Q. Dong and W. Jiang, On the decay of higher order derivatives of solutions to Ladyzhenskaya model for incompressible viscous flows, Science in China Series A: Mathematics, 51 (2008), 925-934.doi: 10.1007/s11425-007-0196-z.

    [8]

    B.-Q. Dong and Y. Li, Large time behavior to the system of incompressible non-Newtonian fluids in $\R^2$, J. Math. Anal. Appl., 298 (2004), 667-676.doi: 10.1016/j.jmaa.2004.05.032.

    [9]

    N. H. Katz and N. Pavlovic, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal., 12 (2002), 355-379.doi: 10.1007/s00039-002-8250-z.

    [10]

    T. Kawanago, Stability estimate for strong solutions of the Navier-Stokes system and its applications, Electron. J. Differential Equations, 15 (1998), 1-23.

    [11]

    P. E. Kloeden, J. A. Langa and J. Real, Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 6 (2007), 937-955.doi: 10.3934/cpaa.2007.6.937.

    [12]

    H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys., 214 (2000) 191-200.doi: 10.1007/s002200000267.

    [13]

    H. Kozono, Asymptotic stability of large solutions with large perturbation to the Navier-Stokes equations, J. Funct. Anal., 176 (2000), 153-197.doi: 10.1006/jfan.2000.3625.

    [14]

    J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta. Math., 63 (1934), 193-248.doi: 10.1007/BF02547354.

    [15]

    F.-H. Lin, P. Zhang and Z. Zhang, On the global existence of smooth solution to the 2-D FENE dumbbell model, Comm. Math. Phys., 277 (2008), 531-553.doi: 10.1007/s00220-007-0385-1.

    [16]

    K. Masuda, Weak solutions of the Navier-Stokes equations, Tohoku Math. J., 36 (1984), 623-646.doi: 10.2748/tmj/1178228767.

    [17]

    G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., 159 (1994), 329-341.doi: 10.1007/BF02102642.

    [18]

    M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch Rational Mech. Anal., 88 (1985), 209-222.doi: 10.1007/BF00752111.

    [19]

    M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Comm. Partial Differential Equations, 11 (1986), 733-763.

    [20]

    M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations in $H^m$ spaces, Comm. Partial Differential Equations, 20 (1995), 103-117.

    [21]

    M. E. Schonbek and T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows, Discrete and Continuous Dynamical Systems, 13 (2005), 1277-1304.doi: 10.3934/dcds.2005.13.1277.

    [22]

    R. Teman, "The Navier-Stokes Equations," Studies in Mathematics and its Applications, 2, 1977.

    [23]

    Y. Zhou, Asymptotic stability to the 3D Navier-Stokes equations, Comm. Partial Differential Equations, 30 (2005), 323-333.

    [24]

    L. Zhang, Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations, Comm. Partial Differential Equations, 20 (1995), 119-127.

    [25]

    L. Zhang, New results of general $n$-dimensional incompressible Navier-Stokes equations, J. Differential Equations, 245 (2008), 3470-3502.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return