Citation: |
[1] |
M. Bestvina and M. Feighn, Stable actions of groups on real trees, Invent. Math., 121 (1995), 287-321. |
[2] |
M. Bestvina, $\mathbbR$-trees in topology, geometry, and group theory, in "Handbook of Geometric Topology," North-Holland, Amsterdam, (2002), 55-91. |
[3] |
M. Boshernitzan and I. Kornfeld, Interval translation mappings, Ergodic Theory and Dynamical Systems, 15 (1995), 821-832.doi: 10.1017/S0143385700009652. |
[4] |
H. Bruin and S. Troubetzkoy, The Gauss Map on a class of interval translation mappings, Israel J. Math, 137 (2003), 125-148.doi: 10.1007/BF02785958. |
[5] |
I. Dynnikov, Interval identification systems and plane sections of 3-periodic surfaces, Proceedings of the Steklov Institute of Mathematics, 263 (2008), 65-77.doi: 10.1134/S0081543808040068. |
[6] |
I. Dynnikov and B. Wiest, On the complexity of braids, J. Eur. Math. Soc., 9 (2007), 801-840.doi: 10.4171/JEMS/98. |
[7] |
I. Dynnikov, Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples, in "Solitons, Geometry, and Topology: On the Crossroad" AMS Transl., Ser. 2, 179, Amer. Math. Soc., Providence, RI, (1997), 45-73. |
[8] |
D. Gaboriau, Dynamique des systèmes d'isométries: Sur les bouts des orbits, Invent. Math., 126 (1996), 297-318.doi: 10.1007/s002220050101. |
[9] |
G. Levitt, La dynamique des pseudogroupes de rotations, Invent. Math., 113 (1993), 633-670.doi: 10.1007/BF01244321. |
[10] |
S. P. Novikov, The Hamiltonian formalism and many-valued analogue of Morse theory, Usp. Mat. Nauk, 37 (1982), 3-49. |