    March  2012, 32(3): 795-826. doi: 10.3934/dcds.2012.32.795

## Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent

 1 Department of Mathematics, Huazhong Normal University, Wuhan 430079, China, China 2 Department of Mathematics, Central China Normal University, Wuhan 430079, China

Received  March 2010 Revised  August 2011 Published  October 2011

In this paper, we consider the following problem $$\left\{ \begin{array}{ll} -\Delta u+u=u^{2^{*}-1}+\lambda(f(x,u)+h(x))\ \ \hbox{in}\ \mathbb{R}^{N},\\ u\in H^{1}(\mathbb{R}^{N}),\ \ u>0 \ \hbox{in}\ \mathbb{R}^{N}, \end{array} \right. (\star)$$ where $\lambda>0$ is a parameter, $2^* =\frac {2N}{N-2}$ is the critical Sobolev exponent and $N>4$, $f(x,t)$ and $h(x)$ are some given functions. We prove that there exists $0<\lambda^{*}<+\infty$ such that $(\star)$ has exactly two positive solutions for $\lambda\in(0,\lambda^{*})$ by Barrier method and Mountain Pass Lemma and no positive solutions for $\lambda >\lambda^*$. Moreover, if $\lambda=\lambda^*$, $(\star)$ has a unique solution $(\lambda^{*}, u_{\lambda^{*}})$, which means that $(\lambda^{*}, u_{\lambda^{*}})$ is a turning point in $H^{1}(\mathbb{R}^{N})$ for problem $(\star)$.
Citation: Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795
##### References:
  A. Ambrosetti and M. Struwe, A note on the problem $-\Delta u=\lambda u+u|u| ^{2^\mathbf{star}-2}$, Manuscripta Math., 54 (1986), 373-379. doi: 10.1007/BF01168482.  Google Scholar  V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300. doi: 10.1007/BF00282048.  Google Scholar  A. Bahri and P.-L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math., 41 (1988), 1027-1037. doi: 10.1002/cpa.3160410803.  Google Scholar  A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365-413. Google Scholar  A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbbR^N$, Rev. Mat. Iberoamericana, 6 (1990), 1-15. Google Scholar  H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.  Google Scholar  G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 341-350. Google Scholar  K. Chen and C. Peng, Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear elliptic problems, J. Differential Equations, 240 (2007), 58-91. doi: 10.1016/j.jde.2007.05.023.  Google Scholar  M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180. doi: 10.1007/BF00282325.  Google Scholar  D. Cao and H. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbbR^N$, Proc. Roy. Soc. Edinburgh Sect., A 126 (1996), 443-463. Google Scholar  Y. Deng, Existence of multiple positive solutions for a semilinear equation with critical exponent, Proc. Roy. Soc. Edinburgh Sect., A 122 (1992), 161-175. Google Scholar  Y. B. Deng, Q. Gao and D. D. Zhang, Nodal Solutions for Laplace Equations with Critical Sobolev and Hardy Exponents on $\mathbbR$, Discrete and Continuous Dynamical Systems (DCDS-A), 19 (2007), 211-233. Google Scholar  Y. Deng and Y. Li, Existence and bifurcation of the positive solutions for a semilinear equation with critical exponent, J. Differential Equations, 130 (1996), 179-200. doi: 10.1006/jdeq.1996.0138.  Google Scholar  Y. Deng, Z. Guo and G. Wang, Nodal solutions for $p$-Laplace equations with critical growth, Nonlinear Anal. TMA., 54 (2003), 1121-1151. doi: 10.1016/S0362-546X(03)00129-9.  Google Scholar  Y. Deng, Y. Ma and X. Zhao, Existence and properties of multiple positive solutions for semi-linear equations with critical exponents, Rocky Mountain J. Math., 35 (2005), 1479-1512. doi: 10.1216/rmjm/1181069647.  Google Scholar  Y. Deng, L. Jin and S. Peng, Solutions of Schrödinger equations with inverse square potential and critical nonlinearity, Commun. Math. Sci,. 9 (2011), 859-878. Google Scholar  G. Cerami and R. Molle, On some Schrodinger equations with non regular potential at infinity, Discrete and Continuous Dynamical Systems (DCDS-A), 28 (2010), 827-844. Google Scholar  B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243. doi: 10.1007/BF01221125.  Google Scholar  D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equation of Second Order," Springer-Verlag, Berlin, 1983. Google Scholar  J. Graham-Eagle, Monotone method for semilinear elliptic equations in unbounded domains, J. Math. Anal. Appl., 137 (1989), 122-131. doi: 10.1016/0022-247X(89)90276-X.  Google Scholar  N. Hirano, Existence of entire positive solutions for nonhomogeneous elliptic equations, Nonlinear Anal., 29 (1997), 889-901. doi: 10.1016/S0362-546X(96)00176-9.  Google Scholar  L. Jeanjean, Two positive solutions for a class of nonhomogeneous elliptic equations, Differential Integral Equations, 10 (1997), 609-624. Google Scholar  C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete and Continuous Dynamical Systems (DCDS-A), 28 (2010), 469-493. Google Scholar  P.-L. Lions, The concentration-compactness principle in the calculus of variations, The limit case. I. Rev. Mat. Iberoamericana, 1 (1985), 145-201. Google Scholar  J. Yang, Positive solutions of semilinear elliptic problems in exterior domains, J. Differential Equations, 106 (1993), 40-69. doi: 10.1006/jdeq.1993.1098.  Google Scholar  X. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Differential Equations, 92 (1991), 163-178. doi: 10.1016/0022-0396(91)90045-B.  Google Scholar  X. Zhu and D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (1989), 307-328. Google Scholar  X. Zhu and H. Zhou, Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 301-318. Google Scholar

show all references

##### References:
  A. Ambrosetti and M. Struwe, A note on the problem $-\Delta u=\lambda u+u|u| ^{2^\mathbf{star}-2}$, Manuscripta Math., 54 (1986), 373-379. doi: 10.1007/BF01168482.  Google Scholar  V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300. doi: 10.1007/BF00282048.  Google Scholar  A. Bahri and P.-L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math., 41 (1988), 1027-1037. doi: 10.1002/cpa.3160410803.  Google Scholar  A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365-413. Google Scholar  A. Bahri and Y. Y. Li, On a min-max procedure for the existence of a positive solution for certain scalar field equations in $\mathbbR^N$, Rev. Mat. Iberoamericana, 6 (1990), 1-15. Google Scholar  H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.  Google Scholar  G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 341-350. Google Scholar  K. Chen and C. Peng, Multiplicity and bifurcation of positive solutions for nonhomogeneous semilinear elliptic problems, J. Differential Equations, 240 (2007), 58-91. doi: 10.1016/j.jde.2007.05.023.  Google Scholar  M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180. doi: 10.1007/BF00282325.  Google Scholar  D. Cao and H. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in $\mathbbR^N$, Proc. Roy. Soc. Edinburgh Sect., A 126 (1996), 443-463. Google Scholar  Y. Deng, Existence of multiple positive solutions for a semilinear equation with critical exponent, Proc. Roy. Soc. Edinburgh Sect., A 122 (1992), 161-175. Google Scholar  Y. B. Deng, Q. Gao and D. D. Zhang, Nodal Solutions for Laplace Equations with Critical Sobolev and Hardy Exponents on $\mathbbR$, Discrete and Continuous Dynamical Systems (DCDS-A), 19 (2007), 211-233. Google Scholar  Y. Deng and Y. Li, Existence and bifurcation of the positive solutions for a semilinear equation with critical exponent, J. Differential Equations, 130 (1996), 179-200. doi: 10.1006/jdeq.1996.0138.  Google Scholar  Y. Deng, Z. Guo and G. Wang, Nodal solutions for $p$-Laplace equations with critical growth, Nonlinear Anal. TMA., 54 (2003), 1121-1151. doi: 10.1016/S0362-546X(03)00129-9.  Google Scholar  Y. Deng, Y. Ma and X. Zhao, Existence and properties of multiple positive solutions for semi-linear equations with critical exponents, Rocky Mountain J. Math., 35 (2005), 1479-1512. doi: 10.1216/rmjm/1181069647.  Google Scholar  Y. Deng, L. Jin and S. Peng, Solutions of Schrödinger equations with inverse square potential and critical nonlinearity, Commun. Math. Sci,. 9 (2011), 859-878. Google Scholar  G. Cerami and R. Molle, On some Schrodinger equations with non regular potential at infinity, Discrete and Continuous Dynamical Systems (DCDS-A), 28 (2010), 827-844. Google Scholar  B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243. doi: 10.1007/BF01221125.  Google Scholar  D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equation of Second Order," Springer-Verlag, Berlin, 1983. Google Scholar  J. Graham-Eagle, Monotone method for semilinear elliptic equations in unbounded domains, J. Math. Anal. Appl., 137 (1989), 122-131. doi: 10.1016/0022-247X(89)90276-X.  Google Scholar  N. Hirano, Existence of entire positive solutions for nonhomogeneous elliptic equations, Nonlinear Anal., 29 (1997), 889-901. doi: 10.1016/S0362-546X(96)00176-9.  Google Scholar  L. Jeanjean, Two positive solutions for a class of nonhomogeneous elliptic equations, Differential Integral Equations, 10 (1997), 609-624. Google Scholar  C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete and Continuous Dynamical Systems (DCDS-A), 28 (2010), 469-493. Google Scholar  P.-L. Lions, The concentration-compactness principle in the calculus of variations, The limit case. I. Rev. Mat. Iberoamericana, 1 (1985), 145-201. Google Scholar  J. Yang, Positive solutions of semilinear elliptic problems in exterior domains, J. Differential Equations, 106 (1993), 40-69. doi: 10.1006/jdeq.1993.1098.  Google Scholar  X. Zhu, A perturbation result on positive entire solutions of a semilinear elliptic equation, J. Differential Equations, 92 (1991), 163-178. doi: 10.1016/0022-0396(91)90045-B.  Google Scholar  X. Zhu and D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (1989), 307-328. Google Scholar  X. Zhu and H. Zhou, Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 115 (1990), 301-318. Google Scholar
  M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233  Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253  D. Motreanu, Donal O'Regan, Nikolaos S. Papageorgiou. A unified treatment using critical point methods of the existence of multiple solutions for superlinear and sublinear Neumann problems. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1791-1816. doi: 10.3934/cpaa.2011.10.1791  Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076  Marco Donatelli, Luca Vilasi. Existence of multiple solutions for a fourth-order problem with variable exponent. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021141  Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309  Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773  Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025  Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921  Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179  Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527  Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078  Peng Chen, Xiaochun Liu. Multiplicity of solutions to Kirchhoff type equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2018, 17 (1) : 113-125. doi: 10.3934/cpaa.2018007  Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991  Qilin Xie, Jianshe Yu. Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension. Communications on Pure & Applied Analysis, 2019, 18 (1) : 129-158. doi: 10.3934/cpaa.2019008  Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567  Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128  Monica Musso, Donato Passaseo. Multiple solutions of Neumann elliptic problems with critical nonlinearity. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 301-320. doi: 10.3934/dcds.1999.5.301  Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure & Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715  Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

2020 Impact Factor: 1.392