Citation: |
[1] |
H. Berestycki, T. Gallouët and O. Kavian, Équations de champs scalaires euclidiens nonlinéaires daus de plan, C. R. Acad. Sci. Paris. Série I Math., 297 (1983), 307-310. |
[2] |
H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I. Math., 293 (1981), 489-492. |
[3] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555. |
[4] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rat. Mech. Anal., 82 (1983), 347-375. |
[5] |
T. Cazenave, "An Introduction to Nonlinear Schrödinger Equations," Textos de Metodos Matematicos, Vol. 22, Rio de Janeiro, 1989. |
[6] |
Z. H. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system, Commun. Math. Phys., 283 (2008), 93-125.doi: 10.1007/s00220-008-0456-y. |
[7] |
R. T. Glassey, On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.doi: 10.1063/1.523491. |
[8] |
J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I, II. The Cauchy problem, general case. Scattering theory, general case, J. Funct. Anal., 32 (1979), 1-71.doi: 10.1016/0022-1236(79)90076-4. |
[9] |
M. Kono, M. M. Skoric and D. Ter Haar, Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma, J. Plasma Phys., 26 (1981), 123-146.doi: 10.1017/S0022377800010588. |
[10] |
T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré Physique Théorique, 46 (1987), 113-129. |
[11] |
T. Kato and G. Ponce, Commutator estimates for the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891-907.doi: 10.1002/cpa.3160410704. |
[12] |
C. Laurey, The Cauchy problem for a generalized Zakharov system, Diffe. Integral Equ., 8 (1995), 105-130. |
[13] |
H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{\mathcalt\mathcalt}=-Au-F(u)$, Transactions of the American Mathematical Society, 192 (1974), 1-21.doi: 10.2307/1996814. |
[14] |
C. T. Mckinstrie and D. A. Russell, Nonlinear focusing of coupled waves, Phys. Rev. Lett., 61 (1988), 2929-2932.doi: 10.1103/PhysRevLett.61.2929. |
[15] |
C. X. Miao, "Harmonic Analysis and Applications to Partial Differential Equations," Second edition, Monographs on Modern Pure Mathematics, No. 89, Science Press, Beijing, 2004. |
[16] |
C. X. Miao, "The Modern Method of Nonlinear Wave Equations," Lectures in Contemporary Mathematics, No. 2, Science Press, Beijing, 2005. |
[17] |
C. X. Miao and B. Zhang, "Harmonic Analysis Method of Partial Differential Equations," Second edition, Monographs on Modern Pure Mathematics, No. 117, Science Press, Beijing, 2008. |
[18] |
L. Nirenberg, On elliptic partial differential equations, Ann. della Scuola Norm. Sup. Pisa, 13 (1959), 115-162. |
[19] |
M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system, Ann. Inst. Henri. Poincaré Phys. Théor., 62 (1995), 69-80. |
[20] |
M. Ohta, Blow-up solutions and strong instability of standing waves for the generalized Davey-Stewartson system in $\mathbbR^2$, Ann. Inst. Henri. Poincaré Phys. Théor., 63 (1995), 111-117. |
[21] |
T. Ogawa and Y. Tsutsumi, Blow-up of $H^{1}$ solution for the nonlinear Schrödinger equation, J. Diff. Eq., 92 (1991), 317-330. |
[22] |
T. Ogawa and Y. Tsutsumi, Blow-up of $H^{1}$ solutions for the one-dimension nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496. |
[23] |
L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel Journal of Mathematics, 22 (1975), 273-303.doi: 10.1007/BF02761595. |
[24] |
I. Segal, Nonlinear semi-groups, Ann. Math., 78 (1963), 339-364.doi: 10.2307/1970347. |
[25] |
W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.doi: 10.1007/BF01626517. |
[26] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983/83), 567-576. |
[27] |
V. E. Zakharov, The collapse of Langmuir waves, Soviet Phys. JETP, 35 (1972), 908-914. |
[28] |
J. Zhang, Sharp conditions of global existence for nonlinear Schrödinger and Klein-Gordon equations, Nonlinear Analysis, 48 (2002), 191-207.doi: 10.1016/S0362-546X(00)00180-2. |
[29] |
J. Zhang, Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential, Commun. in PDE, 30 (2005), 1429-1443.doi: 10.1080/03605300500299539. |