-
Previous Article
Multi-dimensional traveling fronts in bistable reaction-diffusion equations
- DCDS Home
- This Issue
-
Next Article
Non-algebraic attractors on $\mathbf{P}^k$
Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain
1. | College of science, Xi’an Jiaotong University, Xi’an, 710049, China |
References:
[1] |
B. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations, Acta. Math. Appl. Sinica (English Ser.), 5 (1989), 208-218. |
[2] |
B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 16 (1995), 379-390. |
[3] |
B. Guo and B. Wang, Gevrey class regularity and approximate inertial manifolds for the Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 19 (1998), 179-188. |
[4] |
B. Guo and B. Wang, Approximate inertial manifolds to the Newton-Boussinesq equations, J. Partial Differential Equations, 9 (1996), 237-250. |
[5] |
G. Fucci, B. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel, Nonlinear Anal., 70 (2009), 2000-2013.
doi: 10.1016/j.na.2008.02.098. |
[6] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[7] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Acad. Sci. Paris, 342 (2006), 263-268. |
[8] |
B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815.
doi: 10.1016/j.na.2008.07.011. |
[9] |
B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3887-3902.
doi: 10.1016/j.na.2010.01.026. |
show all references
References:
[1] |
B. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations, Acta. Math. Appl. Sinica (English Ser.), 5 (1989), 208-218. |
[2] |
B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 16 (1995), 379-390. |
[3] |
B. Guo and B. Wang, Gevrey class regularity and approximate inertial manifolds for the Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 19 (1998), 179-188. |
[4] |
B. Guo and B. Wang, Approximate inertial manifolds to the Newton-Boussinesq equations, J. Partial Differential Equations, 9 (1996), 237-250. |
[5] |
G. Fucci, B. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel, Nonlinear Anal., 70 (2009), 2000-2013.
doi: 10.1016/j.na.2008.02.098. |
[6] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[7] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Acad. Sci. Paris, 342 (2006), 263-268. |
[8] |
B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815.
doi: 10.1016/j.na.2008.07.011. |
[9] |
B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3887-3902.
doi: 10.1016/j.na.2010.01.026. |
[1] |
Xueli Song, Jianhua Wu. Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor. Evolution Equations and Control Theory, 2022, 11 (1) : 41-65. doi: 10.3934/eect.2020102 |
[2] |
Zhengguang Guo, Sadek Gala. Regularity criterion of the Newton-Boussinesq equations in $R^3$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 443-451. doi: 10.3934/cpaa.2012.11.443 |
[3] |
Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058 |
[4] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[5] |
Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401 |
[6] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1601-1631. doi: 10.3934/cpaa.2021034 |
[7] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[8] |
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013 |
[9] |
Erisa Hasani, Kanishka Perera. On the compactness threshold in the critical Kirchhoff equation. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 1-19. doi: 10.3934/dcds.2021106 |
[10] |
Saugata Bandyopadhyay, Bernard Dacorogna, Olivier Kneuss. The Pullback equation for degenerate forms. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 657-691. doi: 10.3934/dcds.2010.27.657 |
[11] |
Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195 |
[12] |
T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037 |
[13] |
Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060 |
[14] |
Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036 |
[15] |
Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028 |
[16] |
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017 |
[17] |
Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223 |
[18] |
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 |
[19] |
Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73 |
[20] |
Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic and Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]