\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain

Abstract Related Papers Cited by
  • We investigate the asymptotic behavior of solutions of a class of non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. The existence of pullback global attractors is proved in $L^2(\Omega)\times L^2(\Omega)$ and $H^1(\Omega)\times H^1(\Omega)$, respectively.
    Mathematics Subject Classification: Primary: 35B40; Secondary: 35B41, 37L30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations, Acta. Math. Appl. Sinica (English Ser.), 5 (1989), 208-218.

    [2]

    B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 16 (1995), 379-390.

    [3]

    B. Guo and B. Wang, Gevrey class regularity and approximate inertial manifolds for the Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 19 (1998), 179-188.

    [4]

    B. Guo and B. Wang, Approximate inertial manifolds to the Newton-Boussinesq equations, J. Partial Differential Equations, 9 (1996), 237-250.

    [5]

    G. Fucci, B. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel, Nonlinear Anal., 70 (2009), 2000-2013.doi: 10.1016/j.na.2008.02.098.

    [6]

    T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.doi: 10.1016/j.na.2005.03.111.

    [7]

    T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Acad. Sci. Paris, 342 (2006), 263-268.

    [8]

    B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815.doi: 10.1016/j.na.2008.07.011.

    [9]

    B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3887-3902.doi: 10.1016/j.na.2010.01.026.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return