Citation: |
[1] |
B. Guo, Spectral method for solving the two-dimensional Newton-Boussinesq equations, Acta. Math. Appl. Sinica (English Ser.), 5 (1989), 208-218. |
[2] |
B. Guo, Nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 16 (1995), 379-390. |
[3] |
B. Guo and B. Wang, Gevrey class regularity and approximate inertial manifolds for the Newton-Boussinesq equations, Chinese Ann. Math. Ser. B, 19 (1998), 179-188. |
[4] |
B. Guo and B. Wang, Approximate inertial manifolds to the Newton-Boussinesq equations, J. Partial Differential Equations, 9 (1996), 237-250. |
[5] |
G. Fucci, B. Wang and P. Singh, Asymptotic behavior of the Newton-Boussinesq equation in a two-dimensional channel, Nonlinear Anal., 70 (2009), 2000-2013.doi: 10.1016/j.na.2008.02.098. |
[6] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.doi: 10.1016/j.na.2005.03.111. |
[7] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Acad. Sci. Paris, 342 (2006), 263-268. |
[8] |
B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal., 70 (2009), 3799-3815.doi: 10.1016/j.na.2008.07.011. |
[9] |
B. Wang and R. Jones, Asymptotic behavior of a class of non-autonomous degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3887-3902.doi: 10.1016/j.na.2010.01.026. |