\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a property of a generalized Kolmogorov population model

Abstract Related Papers Cited by
  • We consider Kolmogorov-type systems which are not necessarily competitive or cooperative. Our main result shows that such systems cannot have nontrivial periodic solutions whose orbits are orbitally stable. We obtain our results under two assumptions that we consider to be natural assumptions.
    Mathematics Subject Classification: 34C60, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Ahmad and A. C. Lazer, Average growth and total permanence in a competitive Lotka-Volterra system, Ann. Mat. Pura Appl., 185 (2006), S47-S67.doi: 10.1007/s10231-004-0136-2.

    [2]

    C. Cosner and R. S. Cantrell, "Spatial Ecology via Reaction-Diffusion Equations," John Wiley, 2003.

    [3]

    K. P. Hadeler and D. Glas, Quasimonotone systems and convergence to equilibrium in a population genetic model, J. Math. Anal. Appl., 95 (1983), 297-303.doi: 10.1016/0022-247X(83)90108-7.

    [4]

    M. W. Hirsch, The dynamical systems approach to differential equations, Bull. Amer. Math. Soc., 11 (1984), 1-64.doi: 10.1090/S0273-0979-1984-15236-4.

    [5]

    J. Jiang, Attractors for strictly monotone flows, J. Math. Anal. Appl., 162 (1991), 210-223.doi: 10.1016/0022-247X(91)90188-6.

    [6]

    A. N. Kolmogorov, "Sulla Teoria Di Volterra Della Lotta Per L'esistenza," Giorn. Instituto Ital. Attuari, 1936.

    [7]

    H. L. Smith, "Monotone Dynamical Systems: An introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41, 1995.

    [8]

    F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems, Results Math., 21 (1992), 224-250.

    [9]

    M. L. Zeeman, Hopf bifurcation in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Syst., 8 (1993), 189-216.doi: 10.1080/02681119308806158.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(150) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return