-
Previous Article
Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential
- DCDS Home
- This Issue
-
Next Article
Tribute to our friend and colleague Jean Mawhin
On a property of a generalized Kolmogorov population model
1. | Department of Mathematics, University of Texas at San Antonio, San Antonio, Texas 78249, United States |
2. | Department of Mathematics, University of Miami, Coral Gables, Miami, Florida 33124, United States |
References:
[1] |
S. Ahmad and A. C. Lazer, Average growth and total permanence in a competitive Lotka-Volterra system, Ann. Mat. Pura Appl., 185 (2006), S47-S67.
doi: 10.1007/s10231-004-0136-2. |
[2] |
C. Cosner and R. S. Cantrell, "Spatial Ecology via Reaction-Diffusion Equations," John Wiley, 2003. |
[3] |
K. P. Hadeler and D. Glas, Quasimonotone systems and convergence to equilibrium in a population genetic model, J. Math. Anal. Appl., 95 (1983), 297-303.
doi: 10.1016/0022-247X(83)90108-7. |
[4] |
M. W. Hirsch, The dynamical systems approach to differential equations, Bull. Amer. Math. Soc., 11 (1984), 1-64.
doi: 10.1090/S0273-0979-1984-15236-4. |
[5] |
J. Jiang, Attractors for strictly monotone flows, J. Math. Anal. Appl., 162 (1991), 210-223.
doi: 10.1016/0022-247X(91)90188-6. |
[6] |
A. N. Kolmogorov, "Sulla Teoria Di Volterra Della Lotta Per L'esistenza," Giorn. Instituto Ital. Attuari, 1936. |
[7] |
H. L. Smith, "Monotone Dynamical Systems: An introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41, 1995. |
[8] |
F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems, Results Math., 21 (1992), 224-250. |
[9] |
M. L. Zeeman, Hopf bifurcation in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Syst., 8 (1993), 189-216.
doi: 10.1080/02681119308806158. |
show all references
References:
[1] |
S. Ahmad and A. C. Lazer, Average growth and total permanence in a competitive Lotka-Volterra system, Ann. Mat. Pura Appl., 185 (2006), S47-S67.
doi: 10.1007/s10231-004-0136-2. |
[2] |
C. Cosner and R. S. Cantrell, "Spatial Ecology via Reaction-Diffusion Equations," John Wiley, 2003. |
[3] |
K. P. Hadeler and D. Glas, Quasimonotone systems and convergence to equilibrium in a population genetic model, J. Math. Anal. Appl., 95 (1983), 297-303.
doi: 10.1016/0022-247X(83)90108-7. |
[4] |
M. W. Hirsch, The dynamical systems approach to differential equations, Bull. Amer. Math. Soc., 11 (1984), 1-64.
doi: 10.1090/S0273-0979-1984-15236-4. |
[5] |
J. Jiang, Attractors for strictly monotone flows, J. Math. Anal. Appl., 162 (1991), 210-223.
doi: 10.1016/0022-247X(91)90188-6. |
[6] |
A. N. Kolmogorov, "Sulla Teoria Di Volterra Della Lotta Per L'esistenza," Giorn. Instituto Ital. Attuari, 1936. |
[7] |
H. L. Smith, "Monotone Dynamical Systems: An introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41, 1995. |
[8] |
F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems, Results Math., 21 (1992), 224-250. |
[9] |
M. L. Zeeman, Hopf bifurcation in competitive three-dimensional Lotka-Volterra systems, Dynam. Stability Syst., 8 (1993), 189-216.
doi: 10.1080/02681119308806158. |
[1] |
Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505 |
[2] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435 |
[3] |
Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477 |
[4] |
Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1 |
[5] |
Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495 |
[6] |
Zengji Du, Shuling Yan, Kaige Zhuang. Traveling wave fronts in a diffusive and competitive Lotka-Volterra system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3097-3111. doi: 10.3934/dcdss.2021010 |
[7] |
Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093 |
[8] |
Hélène Leman, Sylvie Méléard, Sepideh Mirrahimi. Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 469-493. doi: 10.3934/dcdsb.2015.20.469 |
[9] |
Xiaoling Zou, Ke Wang. Optimal harvesting for a stochastic N-dimensional competitive Lotka-Volterra model with jumps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 683-701. doi: 10.3934/dcdsb.2015.20.683 |
[10] |
Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111 |
[11] |
Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523 |
[12] |
Francisco Montes de Oca, Liliana Pérez. Balancing survival and extinction in nonautonomous competitive Lotka-Volterra systems with infinite delays. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2663-2690. doi: 10.3934/dcdsb.2015.20.2663 |
[13] |
Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135 |
[14] |
Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4071-4093. doi: 10.3934/dcds.2013.33.4071 |
[15] |
Isabel Coelho, Carlota Rebelo, Elisa Sovrano. Extinction or coexistence in periodic Kolmogorov systems of competitive type. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5743-5764. doi: 10.3934/dcds.2021094 |
[16] |
Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75 |
[17] |
G. Donald Allen. A dynamic model for competitive-cooperative species. Conference Publications, 1998, 1998 (Special) : 29-50. doi: 10.3934/proc.1998.1998.29 |
[18] |
Łukasz Struski, Jacek Tabor, Tomasz Kułaga. Cone-fields without constant orbit core dimension. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3651-3664. doi: 10.3934/dcds.2012.32.3651 |
[19] |
Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027 |
[20] |
Helen Christodoulidi, Andrew N. W. Hone, Theodoros E. Kouloukas. A new class of integrable Lotka–Volterra systems. Journal of Computational Dynamics, 2019, 6 (2) : 223-237. doi: 10.3934/jcd.2019011 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]