March  2013, 33(3): 1009-1032. doi: 10.3934/dcds.2013.33.1009

Variational approach to second species periodic solutions of Poincaré of the 3 body problem

1. 

Department of Mathematics, University of Wisconsin, Madison, United States

2. 

Department of Mathematics, La Sapienza, University of Rome

Received  April 2011 Revised  February 2012 Published  October 2012

We consider the plane 3 body problem with 2 of the masses small. Periodic solutions with near collisions of small bodies were named by Poincaré second species periodic solutions. Such solutions shadow chains of collision orbits of 2 uncoupled Kepler problems. Poincaré only sketched the proof of the existence of second species solutions. Rigorous proofs appeared much later and only for the restricted 3 body problem. We develop a variational approach to the existence of second species periodic solutions for the nonrestricted 3 body problem. As an application, we give a rigorous proof of the existence of a class of second species solutions.
Citation: Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009
References:
[1]

V. M. Alexeyev and Y. S. Osipov, Accuracy of Keplerapproximation for fly-by orbits near an attracting center,, Erg. Th. & Dyn. Syst., 2 (1982), 263.   Google Scholar

[2]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Mathematical Aspects of Classical and Celestial Mechanics,", Encyclopedia of Math. Sciences, (1989).   Google Scholar

[3]

V. I. Arnold, Small denominators and problems of stability of motionin classical and celestial mechanics,, Usp. Mat. Nauk., 18 (1963), 91.   Google Scholar

[4]

E. Belbruno, "Capture Dynamics and Chaotic Motions in Celestial Mechanics,", Princeton University Press, (2004).   Google Scholar

[5]

G. Birkhoff, "Dynamical Systems,", AMS Colloquium Publications, (1927).   Google Scholar

[6]

S. Bolotin, Shadowing chains of collision orbits,, Discrete & Contin. Dyn. Syst., 14 (2006), 235.  doi: 10.3934/dcds.2006.14.235.  Google Scholar

[7]

S. Bolotin, Second species periodic orbits of the elliptic 3 body problem,, Celest. & Mech. Dynam. Astron., 93 (2006), 345.   Google Scholar

[8]

S. Bolotin, Symbolic dynamics of almost collision orbits and skew products of symplectic maps,, Nonlinearity, 19 (2006), 2041.  doi: 10.1088/0951-7715/19/9/003.  Google Scholar

[9]

S. Bolotin and R. S. MacKay, Periodic and chaotic trajectories of the second species for the $n$-centre problem,, Celest. Mech. & Dynam. Astron., 77 (2000), 49.  doi: 10.1023/A:1008393706818.  Google Scholar

[10]

S. Bolotin and P. Negrini, Shilnikov Lemma for a nondegenerate critical manifold of a Hamiltonian system,, paper in preparation., ().   Google Scholar

[11]

S. Bolotin and D. Treschev, Hill's formula,, Uspekhi Mat. Nauk, 65 (2010), 3.   Google Scholar

[12]

N. Fenichel, Asymptotic stability with rate conditions for dynamical systems,, Bull. Am. Math. Soc., 80 (1974), 346.  doi: 10.1090/S0002-9904-1974-13498-1.  Google Scholar

[13]

J. Font, A. Nunes and C. Simo, Consecutive quasi-collisions in the planar circular RTBP,, Nonlinearity, 15 (2002), 115.  doi: 10.1088/0951-7715/15/1/306.  Google Scholar

[14]

G. Gomez and M. Olle, Second species solutions in the circular and elliptic restricted three body problem, I and II,, Mech. & Dynam. Astron., 52 (1991), 107.   Google Scholar

[15]

J. P. Marco and L. Niederman, Sur la construction des solutions deseconde espèce dans le problème plan restrient des trois corps,, Ann. Inst. H. Poincare Phys. Théor., 62 (1995), 211.   Google Scholar

[16]

R. S. Palais, The principle of symmetric criticality,, Comm. Math. Phys., 69 (1979), 19.  doi: 10.1007/BF01941322.  Google Scholar

[17]

L. M. Perko, Second species solutions with an $O(u^v)$, $0< v < 1$ near-Moon passage,, Celest. Mech., 24 (1981), 155.  doi: 10.1007/BF01229193.  Google Scholar

[18]

A. Poincaré, "Les Methodes Nouvelles de la Mecanique Celeste,", Volume 3. Gauthier-Villars, (1899).   Google Scholar

[19]

C. Simo, Solution of Lambert's problem by means of regularization,, Collect. Math., 24 (1973), 231.   Google Scholar

[20]

L. P. Shilnikov, On a Poincaré-irkhoff problem,, Math. USSR Sbornik, 3 (1967), 353.   Google Scholar

[21]

D. V. Turaev and L. P. Shilnikov, Hamiltonian systems with homoclinic saddle curves,, (Russian) Dokl. Akad. Nauk SSSR, 304 (1989), 811.   Google Scholar

[22]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,", Cambridge University Press, (1988).   Google Scholar

show all references

References:
[1]

V. M. Alexeyev and Y. S. Osipov, Accuracy of Keplerapproximation for fly-by orbits near an attracting center,, Erg. Th. & Dyn. Syst., 2 (1982), 263.   Google Scholar

[2]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Mathematical Aspects of Classical and Celestial Mechanics,", Encyclopedia of Math. Sciences, (1989).   Google Scholar

[3]

V. I. Arnold, Small denominators and problems of stability of motionin classical and celestial mechanics,, Usp. Mat. Nauk., 18 (1963), 91.   Google Scholar

[4]

E. Belbruno, "Capture Dynamics and Chaotic Motions in Celestial Mechanics,", Princeton University Press, (2004).   Google Scholar

[5]

G. Birkhoff, "Dynamical Systems,", AMS Colloquium Publications, (1927).   Google Scholar

[6]

S. Bolotin, Shadowing chains of collision orbits,, Discrete & Contin. Dyn. Syst., 14 (2006), 235.  doi: 10.3934/dcds.2006.14.235.  Google Scholar

[7]

S. Bolotin, Second species periodic orbits of the elliptic 3 body problem,, Celest. & Mech. Dynam. Astron., 93 (2006), 345.   Google Scholar

[8]

S. Bolotin, Symbolic dynamics of almost collision orbits and skew products of symplectic maps,, Nonlinearity, 19 (2006), 2041.  doi: 10.1088/0951-7715/19/9/003.  Google Scholar

[9]

S. Bolotin and R. S. MacKay, Periodic and chaotic trajectories of the second species for the $n$-centre problem,, Celest. Mech. & Dynam. Astron., 77 (2000), 49.  doi: 10.1023/A:1008393706818.  Google Scholar

[10]

S. Bolotin and P. Negrini, Shilnikov Lemma for a nondegenerate critical manifold of a Hamiltonian system,, paper in preparation., ().   Google Scholar

[11]

S. Bolotin and D. Treschev, Hill's formula,, Uspekhi Mat. Nauk, 65 (2010), 3.   Google Scholar

[12]

N. Fenichel, Asymptotic stability with rate conditions for dynamical systems,, Bull. Am. Math. Soc., 80 (1974), 346.  doi: 10.1090/S0002-9904-1974-13498-1.  Google Scholar

[13]

J. Font, A. Nunes and C. Simo, Consecutive quasi-collisions in the planar circular RTBP,, Nonlinearity, 15 (2002), 115.  doi: 10.1088/0951-7715/15/1/306.  Google Scholar

[14]

G. Gomez and M. Olle, Second species solutions in the circular and elliptic restricted three body problem, I and II,, Mech. & Dynam. Astron., 52 (1991), 107.   Google Scholar

[15]

J. P. Marco and L. Niederman, Sur la construction des solutions deseconde espèce dans le problème plan restrient des trois corps,, Ann. Inst. H. Poincare Phys. Théor., 62 (1995), 211.   Google Scholar

[16]

R. S. Palais, The principle of symmetric criticality,, Comm. Math. Phys., 69 (1979), 19.  doi: 10.1007/BF01941322.  Google Scholar

[17]

L. M. Perko, Second species solutions with an $O(u^v)$, $0< v < 1$ near-Moon passage,, Celest. Mech., 24 (1981), 155.  doi: 10.1007/BF01229193.  Google Scholar

[18]

A. Poincaré, "Les Methodes Nouvelles de la Mecanique Celeste,", Volume 3. Gauthier-Villars, (1899).   Google Scholar

[19]

C. Simo, Solution of Lambert's problem by means of regularization,, Collect. Math., 24 (1973), 231.   Google Scholar

[20]

L. P. Shilnikov, On a Poincaré-irkhoff problem,, Math. USSR Sbornik, 3 (1967), 353.   Google Scholar

[21]

D. V. Turaev and L. P. Shilnikov, Hamiltonian systems with homoclinic saddle curves,, (Russian) Dokl. Akad. Nauk SSSR, 304 (1989), 811.   Google Scholar

[22]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,", Cambridge University Press, (1988).   Google Scholar

[1]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[2]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[3]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[4]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[5]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[6]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[7]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[8]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[11]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[12]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[13]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[14]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[17]

Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043

[18]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]