• Previous Article
    On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base
  • DCDS Home
  • This Issue
  • Next Article
    Variational approach to second species periodic solutions of Poincaré of the 3 body problem
March  2013, 33(3): 1033-1047. doi: 10.3934/dcds.2013.33.1033

The angular momentum of a relative equilibrium

1. 

ASD, IMCCE (UMR 8028), Observatoire de Paris, 77 avenue Denfert-Rochereau, 75014 Paris

Received  April 2011 Revised  February 2012 Published  October 2012

There are two main reasons why relative equilibria of $N$ point masses under the influence of Newton attraction are mathematically more interesting to study when space dimension is at least 4:
    1) in a higher dimensional space, a relative equilibrium is determined not only by the initial configuration but also by the choice of a hermitian structure on the space where the motion takes place (see [3]); in particu\-lar, its angular momentum depends on this choice;
    2) relative equilibria are not necessarily periodic: if the configuration is balanced but not central (see [3,2,7]), the motion is in general quasi-periodic.
    In this exploratory paper we address the following question, which touches both aspects: what are the possible frequencies of the angular momentum of a given central (or balanced) configuration and at what values of these frequencies bifurcations from periodic to quasi-periodic relative equilibria do occur? We give a full answer for relative equilibrium motions in $R^4$ and conjecture that an analogous situation holds true for higher dimensions. A refinement of Horn's problem given in [12] plays an important role.
Citation: Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033
References:
[1]

A. Albouy, Integral manifolds of the $N$-body problem,, Inventiones Mathematicæ, 114 (1993), 463.  doi: 10.1007/BF01232677.  Google Scholar

[2]

A. Albouy, "Mutual Distances in Celestial Mechanics,", Lectures at Nankai Institute, (2004).   Google Scholar

[3]

A. Albouy and A. Chenciner, Le problème des $n$ corps et les distances mutuelles,, Inventiones Mathematicæ, 131 (1998), 151.  doi: 10.1007/s002220050200.  Google Scholar

[4]

V. I. Arnold, "Mathematical methods of classical Mechanics,", Graduate Texts in Mathematics, (1989).   Google Scholar

[5]

R. Bhatia, Linear algebra to quantum cohomology: The story of alfred Horn's inequalitites,, The American Mathematical Monthly, 108 (2001), 289.  doi: 10.2307/2695237.  Google Scholar

[6]

P. Birtea, I. Casu, T. Ratiu and M. Turhan, Stability of equilibria for the so$(4)$ free rigid body,, preprint, ().   Google Scholar

[7]

A. Chenciner, The Lagrange reduction of the $N$-body problem: a survey,, preprint, ().   Google Scholar

[8]

A. Chenciner, Symmetric 4-body balanced configurations and their relative equilibrium motions,, in preparation., ().   Google Scholar

[9]

A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn's problem,, preprint, ().   Google Scholar

[10]

W. Fulton, Eigenvalues of sums of hermitian matrices,, Séminaire Bourbaki, 1997/98 (1998).   Google Scholar

[11]

W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus,, Bull. Amer. Math. Soc. (N. S.), 37 (2000), 209.   Google Scholar

[12]

S. Fomin, W. Fulton, C. K. Li and Y. T. Poon, Eigenvalues, singular values, and Little wood-Richardson coefficients,, Amer. J. Math., 127 (2005), 101.  doi: 10.1353/ajm.2005.0005.  Google Scholar

[13]

A. Knutson, The symplectic and algebraic geometry of Horn's problem,, Linear Algebra and its Applications, 319 (2000), 61.   Google Scholar

[14]

A. Knutson and T. Tao, Honeycombs and sums of Hermitian matrices,, Notices of the AMS, 48 (2001).   Google Scholar

[15]

H. B. Lawson Junior and M. L. Michelson, "Spin Geometry,", Princeton University Press (1989)., (1989).   Google Scholar

show all references

References:
[1]

A. Albouy, Integral manifolds of the $N$-body problem,, Inventiones Mathematicæ, 114 (1993), 463.  doi: 10.1007/BF01232677.  Google Scholar

[2]

A. Albouy, "Mutual Distances in Celestial Mechanics,", Lectures at Nankai Institute, (2004).   Google Scholar

[3]

A. Albouy and A. Chenciner, Le problème des $n$ corps et les distances mutuelles,, Inventiones Mathematicæ, 131 (1998), 151.  doi: 10.1007/s002220050200.  Google Scholar

[4]

V. I. Arnold, "Mathematical methods of classical Mechanics,", Graduate Texts in Mathematics, (1989).   Google Scholar

[5]

R. Bhatia, Linear algebra to quantum cohomology: The story of alfred Horn's inequalitites,, The American Mathematical Monthly, 108 (2001), 289.  doi: 10.2307/2695237.  Google Scholar

[6]

P. Birtea, I. Casu, T. Ratiu and M. Turhan, Stability of equilibria for the so$(4)$ free rigid body,, preprint, ().   Google Scholar

[7]

A. Chenciner, The Lagrange reduction of the $N$-body problem: a survey,, preprint, ().   Google Scholar

[8]

A. Chenciner, Symmetric 4-body balanced configurations and their relative equilibrium motions,, in preparation., ().   Google Scholar

[9]

A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn's problem,, preprint, ().   Google Scholar

[10]

W. Fulton, Eigenvalues of sums of hermitian matrices,, Séminaire Bourbaki, 1997/98 (1998).   Google Scholar

[11]

W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus,, Bull. Amer. Math. Soc. (N. S.), 37 (2000), 209.   Google Scholar

[12]

S. Fomin, W. Fulton, C. K. Li and Y. T. Poon, Eigenvalues, singular values, and Little wood-Richardson coefficients,, Amer. J. Math., 127 (2005), 101.  doi: 10.1353/ajm.2005.0005.  Google Scholar

[13]

A. Knutson, The symplectic and algebraic geometry of Horn's problem,, Linear Algebra and its Applications, 319 (2000), 61.   Google Scholar

[14]

A. Knutson and T. Tao, Honeycombs and sums of Hermitian matrices,, Notices of the AMS, 48 (2001).   Google Scholar

[15]

H. B. Lawson Junior and M. L. Michelson, "Spin Geometry,", Princeton University Press (1989)., (1989).   Google Scholar

[1]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

[7]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[8]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[9]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[10]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[11]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[18]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[19]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[20]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]