Citation: |
[1] |
A. Albouy, Integral manifolds of the $N$-body problem, Inventiones Mathematicæ, 114 (1993), 463-488.doi: 10.1007/BF01232677. |
[2] |
A. Albouy, "Mutual Distances in Celestial Mechanics," Lectures at Nankai Institute, Tianjin, China, 2004. |
[3] |
A. Albouy and A. Chenciner, Le problème des $n$ corps et les distances mutuelles, Inventiones Mathematicæ, 131 (1998), 151-184.doi: 10.1007/s002220050200. |
[4] |
V. I. Arnold, "Mathematical methods of classical Mechanics," Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. |
[5] |
R. Bhatia, Linear algebra to quantum cohomology: The story of alfred Horn's inequalitites, The American Mathematical Monthly, 108 (2001), 289-318.doi: 10.2307/2695237. |
[6] |
P. Birtea, I. Casu, T. Ratiu and M. Turhan, Stability of equilibria for the so$(4)$ free rigid body, preprint, arXiv:0812.3415. |
[7] |
A. Chenciner, The Lagrange reduction of the $N$-body problem: a survey, preprint, arXiv:1111.1334, submitted to Acta Mathematica Vietnamica. |
[8] |
A. Chenciner, Symmetric 4-body balanced configurations and their relative equilibrium motions, in preparation. |
[9] |
A. Chenciner and H. Jiménez-Pérez, Angular momentum and Horn's problem, preprint, arXiv:1110.5030, submitted to the Moscow Mathematical Journal. |
[10] |
W. Fulton, Eigenvalues of sums of hermitian matrices, Séminaire Bourbaki, exposé, 1997/98 (1998), 255–-269. |
[11] |
W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N. S.), 37 (2000), 209-249. |
[12] |
S. Fomin, W. Fulton, C. K. Li and Y. T. Poon, Eigenvalues, singular values, and Little wood-Richardson coefficients, Amer. J. Math., 127 (2005), 101-127.doi: 10.1353/ajm.2005.0005. |
[13] |
A. Knutson, The symplectic and algebraic geometry of Horn's problem, Linear Algebra and its Applications, 319 (2000), 61-81. |
[14] |
A. Knutson and T. Tao, Honeycombs and sums of Hermitian matrices, Notices of the AMS, Soc., 48 (2001), 175-–186. |
[15] |
H. B. Lawson Junior and M. L. Michelson, "Spin Geometry," Princeton University Press (1989). |