March  2013, 33(3): 1049-1060. doi: 10.3934/dcds.2013.33.1049

On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base

1. 

Departament de Tecnologies Digitals i de la Informació, Universitat de Vic, C/. Laura, 13, 08500 Vic, Barcelona, Catalonia, Spain

2. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

Received  April 2011 Revised  December 2011 Published  October 2012

In this paper we prove the existence of central configurations of the $n+2$--body problem where $n$ equal masses are located at the vertices of a regular $n$--gon and the remaining $2$ masses, which are not necessarily equal, are located on the straight line orthogonal to the plane containing the $n$--gon passing through its center. Here this kind of central configurations is called bi--pyramidal central configurations. In particular, we prove that if the masses $m_{n+1}$ and $m_{n+2}$ and their positions satisfy convenient relations, then the configuration is central. We give explicitly those relations.
Citation: Montserrat Corbera, Jaume Llibre. On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1049-1060. doi: 10.3934/dcds.2013.33.1049
References:
[1]

F. Cedó and J. Llibre, Symmetric central configurations of the spatial $n$-body problem,, J. of Geometry and Physics, 6 (1989), 367.   Google Scholar

[2]

N. Faycal, On the classification of pyramidal central configurations,, Proc. Amer. Math. Soc., 124 (1996), 249.  doi: 10.1090/S0002-9939-96-03135-8.  Google Scholar

[3]

E. S. G. Leandro, Finiteness and bifurcations of some symmetrical classes of central configurations,, Arch. Ration. Mech. Anal., 167 (2003), 147.  doi: 10.1007/s00205-002-0241-6.  Google Scholar

[4]

X. Liu, On double pyramidal central configuration with parallelogram base,, Xinan Shifan Daxue Xuebao Ziran Kexue Ban, 26 (2001), 521.   Google Scholar

[5]

X. Liu, Double pyramidal central configurations with a concave quadrilateral base,, J. Chongqing Univ., 1 (2002), 67.   Google Scholar

[6]

X. Liu, A class of double pyramidal central configurations of 7-body with concave pentagon base,, Xinan ShifanDaxue Xuebao Ziran Kexue Ban, 27 (2002), 494.   Google Scholar

[7]

X. Liu, Existence and uniqueness for a class of double pyramidal central configurations with a concave pentagonal base,, J. Chongqing Univ., 2 (2003), 28.   Google Scholar

[8]

X. Liu and X. Chen, Double pyramidal central configurations of 5-bodieswith arbitrary triangle base,, Sichuan Daxue Xuebao, 40 (2003), 190.   Google Scholar

[9]

X. Liu, Existence and uniqueness of a class of double pyramidal central configurations in six-body problems,, J. Chongqing Univ., 3 (2004), 97.   Google Scholar

[10]

X. Liu, X. Du and T. Feng, Existence and uniqueness for a class of nine-bodies central configurations,, J. Chongqing Univ., 5 (2006), 53.   Google Scholar

[11]

L. F. Mello and A. C. Fernandes, New spatial central configurations in the $5$-body problem,, An. Acad. Bras. Ciênc., 83 (2011), 763.  doi: 10.1590/S0001-37652011005000023.  Google Scholar

[12]

L. F. Mello and A. C. Fernandes, New classes of spatial central configurations for the $n+3$ body problem,, Nonlinear Anal. Real World Appl., 12 (2011), 723.  doi: 10.1016/j.nonrwa.2010.07.013.  Google Scholar

[13]

R. Moeckel and C. Simó, Bifurcation of spatial central configurations from planar ones,, SIAM J. Math. Anal., 26 (1995), 978.  doi: 10.1137/S0036141093248414.  Google Scholar

[14]

T. Ouyang, Z. Xie and S. Zhang, Pyramidal central configurations and perverse solutions,, Electron. J. Differential Equations, 106 (2004), 1.   Google Scholar

[15]

D. Yang and S. Zhang, Necessary conditions for central configurations of six-body problems,, Southeast Asian Bull. Math., 27 (2003), 739.   Google Scholar

[16]

S. Zhang and Q. Zhou, Double pyramidal central configurations,, Phys. Lett. A, 281 (2001), 240.  doi: 10.1016/S0375-9601(01)00140-2.  Google Scholar

show all references

References:
[1]

F. Cedó and J. Llibre, Symmetric central configurations of the spatial $n$-body problem,, J. of Geometry and Physics, 6 (1989), 367.   Google Scholar

[2]

N. Faycal, On the classification of pyramidal central configurations,, Proc. Amer. Math. Soc., 124 (1996), 249.  doi: 10.1090/S0002-9939-96-03135-8.  Google Scholar

[3]

E. S. G. Leandro, Finiteness and bifurcations of some symmetrical classes of central configurations,, Arch. Ration. Mech. Anal., 167 (2003), 147.  doi: 10.1007/s00205-002-0241-6.  Google Scholar

[4]

X. Liu, On double pyramidal central configuration with parallelogram base,, Xinan Shifan Daxue Xuebao Ziran Kexue Ban, 26 (2001), 521.   Google Scholar

[5]

X. Liu, Double pyramidal central configurations with a concave quadrilateral base,, J. Chongqing Univ., 1 (2002), 67.   Google Scholar

[6]

X. Liu, A class of double pyramidal central configurations of 7-body with concave pentagon base,, Xinan ShifanDaxue Xuebao Ziran Kexue Ban, 27 (2002), 494.   Google Scholar

[7]

X. Liu, Existence and uniqueness for a class of double pyramidal central configurations with a concave pentagonal base,, J. Chongqing Univ., 2 (2003), 28.   Google Scholar

[8]

X. Liu and X. Chen, Double pyramidal central configurations of 5-bodieswith arbitrary triangle base,, Sichuan Daxue Xuebao, 40 (2003), 190.   Google Scholar

[9]

X. Liu, Existence and uniqueness of a class of double pyramidal central configurations in six-body problems,, J. Chongqing Univ., 3 (2004), 97.   Google Scholar

[10]

X. Liu, X. Du and T. Feng, Existence and uniqueness for a class of nine-bodies central configurations,, J. Chongqing Univ., 5 (2006), 53.   Google Scholar

[11]

L. F. Mello and A. C. Fernandes, New spatial central configurations in the $5$-body problem,, An. Acad. Bras. Ciênc., 83 (2011), 763.  doi: 10.1590/S0001-37652011005000023.  Google Scholar

[12]

L. F. Mello and A. C. Fernandes, New classes of spatial central configurations for the $n+3$ body problem,, Nonlinear Anal. Real World Appl., 12 (2011), 723.  doi: 10.1016/j.nonrwa.2010.07.013.  Google Scholar

[13]

R. Moeckel and C. Simó, Bifurcation of spatial central configurations from planar ones,, SIAM J. Math. Anal., 26 (1995), 978.  doi: 10.1137/S0036141093248414.  Google Scholar

[14]

T. Ouyang, Z. Xie and S. Zhang, Pyramidal central configurations and perverse solutions,, Electron. J. Differential Equations, 106 (2004), 1.   Google Scholar

[15]

D. Yang and S. Zhang, Necessary conditions for central configurations of six-body problems,, Southeast Asian Bull. Math., 27 (2003), 739.   Google Scholar

[16]

S. Zhang and Q. Zhou, Double pyramidal central configurations,, Phys. Lett. A, 281 (2001), 240.  doi: 10.1016/S0375-9601(01)00140-2.  Google Scholar

[1]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[2]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[3]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[4]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[5]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[7]

Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020358

[8]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[9]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[11]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[12]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[13]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[14]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[15]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[16]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[17]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[18]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[19]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[20]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]