Advanced Search
Article Contents
Article Contents

Boundary values of the resolvent of Schrödinger hamiltonians with potentials of order zero

Abstract Related Papers Cited by
  • Let $H=-\Delta +V$ be a Schrödinger hamiltonian acting on $L^2(\mathbb{R}^n)$, $n\geq 2$, where $V$ a potential of order zero plus a short-range perturbation. In this work we investigate the behavior of the resolvent $R(z)=(H-z)^{-1}$ of $H$ as Im$\,z \downarrow 0$, at high energies and in the framework of Besov spaces $B(\mathbb{R}^n)$. For $\lambda_0>0$ sufficiently large and $\lambda\geq\lambda_0$, we show that there exists a linear operator $R(\lambda+i0)$ such that $R(\lambda+i\epsilon)$ converges to $R(\lambda+i0)$ as $\epsilon\downarrow 0$, strongly in $\mathcal{L}(L^{2, s}(\mathbb{R}^n),L^{2,-s}(\mathbb{R}^n))$, $s>1/2$, and weakly in $\mathcal{L}(B(\mathbb{R}^n),B^*(\mathbb{R}^n))$. We achieve this through a Mourre-estimate strategy.
    Mathematics Subject Classification: Primary: 35P25, 81U99, 47A40; Secondary: 46C99.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 151-218.


    S. Agmon, J. Cruz and I. Herbst, Generalized Fourier transform for Schrödinger operators with potentials of order zero, Journal of Functional Analysis, 167 (1999), 345-369.doi: 10.1006/jfan.1999.3432.


    S. Agmon and L. Hörmander, Asymptotic properties of solutions of differential equations with simple characteristics, Journal D'Analyse Mathématique, 30 (1976), 1–-38.


    G. Barles, On eikonal equations associated with Schrödinger operators with nonspherical radiation conditions, Commun. in Partial Differential Equations, 12 (1987), 263-283.


    J. Cruz-Sampedro, The eikonal equation and a class of Schrödinger-like operators, Submitted 2011.


    J. Dereziński and C. Gérard, "Scattering Theory of Classical and Quantum $N$-Particle Systems," Springer, 1997.


    W. Jäger, Über das Dirichletsche Auβenraumproblem fü die Schwingungsgleichung, Math. Zeitschr, 95 (1967), 299-323.doi: 10.1007/BF01111082.


    A. Jensen and P. Perry, Commutator methods and Besov space estimates for Schrödinger operators, J. Operator Theory, 14 (1985), 181-188.


    D. Jerison and C. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. Math., 121 (1985), 463-494.doi: 10.2307/1971205.


    E. MourreAbsence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys., 78 (1980/81), 391-408. doi: 10.1007/BF01942331.


    P. Perry, I. Sigal and B. Simon, Spectral analysis of $N$-body Schrödinger operators, Ann. Math., 114 (1981), 519-567.doi: 10.2307/1971301.


    M. Reed and B. Simon, "Methods of Modern Mathematical Physics, III Sacattering Theory," New York, Academic Press, 1979.


    M. Reed and B. Simon, "Methods of Modern Mathematical Physics, IV Analysis of Operators," Academic Press, 1978.


    Y. Saitō, Schrödinger operators with a nonspherical radiation condition, Pacific Journal of Mathematics, 126 (1987), 331-359.


    I. Sigal, "Scattering Theory for Many-Body Quantum Mechanical Systems," Lecture Notes in Mathematics 1011, Springer Verlag 1983.


    G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, (French) Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.

  • 加载中

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint