March  2013, 33(3): 1089-1112. doi: 10.3934/dcds.2013.33.1089

Transition map and shadowing lemma for normally hyperbolic invariant manifolds

1. 

Departament de Matemática Aplicada I, ETSEIB-UPC, 08028 Barcelona

2. 

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, United States

3. 

Departament de Matemática Aplicada I, ETSEIB-UPC, 08028 Barcelona,, Spain

Received  April 2011 Revised  December 2011 Published  October 2012

For a given a normally hyperbolic invariant manifold, whose stable and unstable manifolds intersect transversally, we consider several tools and techniques to detect trajectories with prescribed itineraries: the scattering map, the transition map, the method of correctly aligned windows, and the shadowing lemma. We provide an user's guide on how to apply these tools and techniques to detect unstable orbits in a Hamiltonian system. This consists in the following steps: (i) computation of the scattering map and of the transition map for the Hamiltonian flow, (ii) reduction to the scattering map and to the transition map, respectively, for the return map to some surface of section, (iii) construction of sequences of windows within the surface of section, with the successive pairs of windows correctly aligned, alternately, under the transition map, and under some power of the inner map, (iv) detection of trajectories which follow closely those windows. We illustrate this strategy with two models: the large gap problem for nearly integrable Hamiltonian systems, and the the spatial circular restricted three-body problem.
Citation: Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089
References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom,, Sov. Math. Doklady, 5 (1964), 581.   Google Scholar

[2]

K. Burns and M. Gidea, "Differential Geometry and Topology. With a View to Dynamical Systems,'', Studies in Advanced Mathematics. Chapman & Hall/CRC, (2005).   Google Scholar

[3]

J. Cresson and C. Guillet, Hyperbolicity versus partial-hyperbolicity and the transversality-torsion phenomenon,, J. Differential Equations, 244 (2008), 2123.  doi: 10.1016/j.jde.2008.02.009.  Google Scholar

[4]

A. Delshams, M. Gidea and P. Roldan, Arnold's mechanism of diffusion in the spatial circular restricted three-body problem: A semi-numerical argument,, preprint, (2010).   Google Scholar

[5]

A. Delshams, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of $T^2$,, Comm. Math. Phys., 209 (2000), 353.   Google Scholar

[6]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model,, Mem. Amer. Math. Soc., 179 (2006).   Google Scholar

[7]

A. Delshams, R. de la Llave and T. M. Seara, Geometric properties of the scattering map of a normally hyperbolic invariant manifold,, Adv. Math., 217 (2008), 1096.  doi: 10.1016/j.aim.2007.08.014.  Google Scholar

[8]

A. Delshams, M. Gidea, R. de la Llave and T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation,, in (Hamiltonian dynamical systems and applications), (2008), 285.   Google Scholar

[9]

A. Delshams, J. Masdemont and P. Roldán, Computing the scattering map in the spatial Hill's problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 455.  doi: 10.3934/dcdsb.2008.10.455.  Google Scholar

[10]

R. W. Easton, Homoclinic phenomena in Hamiltonian systems with several degrees of freedom,, J. Differential Equations, 29 (1978), 241.  doi: 10.1016/0022-0396(78)90123-7.  Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. J., 23 (): 1109.   Google Scholar

[12]

A. García, Transition tori near an elliptic fixed point,, Discrete Contin. Dynam. Systems, 6 (2000), 381.   Google Scholar

[13]

M. Gidea and R. de la Llave, Topological methods in the instability problem of Hamiltonian systems,, Discrete Contin. Dyn. Syst., 14 (2006), 295.   Google Scholar

[14]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori,, J. Differential Equations, 193 (2003), 49.  doi: 10.1016/S0022-0396(03)00065-2.  Google Scholar

[15]

M. Gidea and C. Robinson, Obstruction argument for transition chains of tori interspersed with gaps,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 393.   Google Scholar

[16]

M. Gidea, and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets,, Ergodic Theory and Dynamical Systems, ().  doi: 10.1017/S0143385712000363.  Google Scholar

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math., (1977).   Google Scholar

[18]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197.   Google Scholar

[19]

J. P. Marco, A normally hyperbolic lambda lemma with applications to diffusion,, Preprint, (2008).   Google Scholar

[20]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187.  doi: 10.1007/BF01403247.  Google Scholar

[21]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', Studies in Advanced Mathematics. CRC Press, (1999).   Google Scholar

[22]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.  doi: 10.1016/j.jde.2004.03.013.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom,, Sov. Math. Doklady, 5 (1964), 581.   Google Scholar

[2]

K. Burns and M. Gidea, "Differential Geometry and Topology. With a View to Dynamical Systems,'', Studies in Advanced Mathematics. Chapman & Hall/CRC, (2005).   Google Scholar

[3]

J. Cresson and C. Guillet, Hyperbolicity versus partial-hyperbolicity and the transversality-torsion phenomenon,, J. Differential Equations, 244 (2008), 2123.  doi: 10.1016/j.jde.2008.02.009.  Google Scholar

[4]

A. Delshams, M. Gidea and P. Roldan, Arnold's mechanism of diffusion in the spatial circular restricted three-body problem: A semi-numerical argument,, preprint, (2010).   Google Scholar

[5]

A. Delshams, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of $T^2$,, Comm. Math. Phys., 209 (2000), 353.   Google Scholar

[6]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model,, Mem. Amer. Math. Soc., 179 (2006).   Google Scholar

[7]

A. Delshams, R. de la Llave and T. M. Seara, Geometric properties of the scattering map of a normally hyperbolic invariant manifold,, Adv. Math., 217 (2008), 1096.  doi: 10.1016/j.aim.2007.08.014.  Google Scholar

[8]

A. Delshams, M. Gidea, R. de la Llave and T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation,, in (Hamiltonian dynamical systems and applications), (2008), 285.   Google Scholar

[9]

A. Delshams, J. Masdemont and P. Roldán, Computing the scattering map in the spatial Hill's problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 455.  doi: 10.3934/dcdsb.2008.10.455.  Google Scholar

[10]

R. W. Easton, Homoclinic phenomena in Hamiltonian systems with several degrees of freedom,, J. Differential Equations, 29 (1978), 241.  doi: 10.1016/0022-0396(78)90123-7.  Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. J., 23 (): 1109.   Google Scholar

[12]

A. García, Transition tori near an elliptic fixed point,, Discrete Contin. Dynam. Systems, 6 (2000), 381.   Google Scholar

[13]

M. Gidea and R. de la Llave, Topological methods in the instability problem of Hamiltonian systems,, Discrete Contin. Dyn. Syst., 14 (2006), 295.   Google Scholar

[14]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori,, J. Differential Equations, 193 (2003), 49.  doi: 10.1016/S0022-0396(03)00065-2.  Google Scholar

[15]

M. Gidea and C. Robinson, Obstruction argument for transition chains of tori interspersed with gaps,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 393.   Google Scholar

[16]

M. Gidea, and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets,, Ergodic Theory and Dynamical Systems, ().  doi: 10.1017/S0143385712000363.  Google Scholar

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math., (1977).   Google Scholar

[18]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197.   Google Scholar

[19]

J. P. Marco, A normally hyperbolic lambda lemma with applications to diffusion,, Preprint, (2008).   Google Scholar

[20]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187.  doi: 10.1007/BF01403247.  Google Scholar

[21]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', Studies in Advanced Mathematics. CRC Press, (1999).   Google Scholar

[22]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.  doi: 10.1016/j.jde.2004.03.013.  Google Scholar

[1]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[2]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[3]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[4]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[5]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[6]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[7]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[8]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[9]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[12]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[13]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[14]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[15]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[16]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[17]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[18]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[19]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[20]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]