March  2013, 33(3): 1089-1112. doi: 10.3934/dcds.2013.33.1089

Transition map and shadowing lemma for normally hyperbolic invariant manifolds

1. 

Departament de Matemática Aplicada I, ETSEIB-UPC, 08028 Barcelona

2. 

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, United States

3. 

Departament de Matemática Aplicada I, ETSEIB-UPC, 08028 Barcelona,, Spain

Received  April 2011 Revised  December 2011 Published  October 2012

For a given a normally hyperbolic invariant manifold, whose stable and unstable manifolds intersect transversally, we consider several tools and techniques to detect trajectories with prescribed itineraries: the scattering map, the transition map, the method of correctly aligned windows, and the shadowing lemma. We provide an user's guide on how to apply these tools and techniques to detect unstable orbits in a Hamiltonian system. This consists in the following steps: (i) computation of the scattering map and of the transition map for the Hamiltonian flow, (ii) reduction to the scattering map and to the transition map, respectively, for the return map to some surface of section, (iii) construction of sequences of windows within the surface of section, with the successive pairs of windows correctly aligned, alternately, under the transition map, and under some power of the inner map, (iv) detection of trajectories which follow closely those windows. We illustrate this strategy with two models: the large gap problem for nearly integrable Hamiltonian systems, and the the spatial circular restricted three-body problem.
Citation: Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089
References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom,, Sov. Math. Doklady, 5 (1964), 581.   Google Scholar

[2]

K. Burns and M. Gidea, "Differential Geometry and Topology. With a View to Dynamical Systems,'', Studies in Advanced Mathematics. Chapman & Hall/CRC, (2005).   Google Scholar

[3]

J. Cresson and C. Guillet, Hyperbolicity versus partial-hyperbolicity and the transversality-torsion phenomenon,, J. Differential Equations, 244 (2008), 2123.  doi: 10.1016/j.jde.2008.02.009.  Google Scholar

[4]

A. Delshams, M. Gidea and P. Roldan, Arnold's mechanism of diffusion in the spatial circular restricted three-body problem: A semi-numerical argument,, preprint, (2010).   Google Scholar

[5]

A. Delshams, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of $T^2$,, Comm. Math. Phys., 209 (2000), 353.   Google Scholar

[6]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model,, Mem. Amer. Math. Soc., 179 (2006).   Google Scholar

[7]

A. Delshams, R. de la Llave and T. M. Seara, Geometric properties of the scattering map of a normally hyperbolic invariant manifold,, Adv. Math., 217 (2008), 1096.  doi: 10.1016/j.aim.2007.08.014.  Google Scholar

[8]

A. Delshams, M. Gidea, R. de la Llave and T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation,, in (Hamiltonian dynamical systems and applications), (2008), 285.   Google Scholar

[9]

A. Delshams, J. Masdemont and P. Roldán, Computing the scattering map in the spatial Hill's problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 455.  doi: 10.3934/dcdsb.2008.10.455.  Google Scholar

[10]

R. W. Easton, Homoclinic phenomena in Hamiltonian systems with several degrees of freedom,, J. Differential Equations, 29 (1978), 241.  doi: 10.1016/0022-0396(78)90123-7.  Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. J., 23 (): 1109.   Google Scholar

[12]

A. García, Transition tori near an elliptic fixed point,, Discrete Contin. Dynam. Systems, 6 (2000), 381.   Google Scholar

[13]

M. Gidea and R. de la Llave, Topological methods in the instability problem of Hamiltonian systems,, Discrete Contin. Dyn. Syst., 14 (2006), 295.   Google Scholar

[14]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori,, J. Differential Equations, 193 (2003), 49.  doi: 10.1016/S0022-0396(03)00065-2.  Google Scholar

[15]

M. Gidea and C. Robinson, Obstruction argument for transition chains of tori interspersed with gaps,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 393.   Google Scholar

[16]

M. Gidea, and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets,, Ergodic Theory and Dynamical Systems, ().  doi: 10.1017/S0143385712000363.  Google Scholar

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math., (1977).   Google Scholar

[18]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197.   Google Scholar

[19]

J. P. Marco, A normally hyperbolic lambda lemma with applications to diffusion,, Preprint, (2008).   Google Scholar

[20]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187.  doi: 10.1007/BF01403247.  Google Scholar

[21]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', Studies in Advanced Mathematics. CRC Press, (1999).   Google Scholar

[22]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.  doi: 10.1016/j.jde.2004.03.013.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Instability of dynamical systems with several degrees of freedom,, Sov. Math. Doklady, 5 (1964), 581.   Google Scholar

[2]

K. Burns and M. Gidea, "Differential Geometry and Topology. With a View to Dynamical Systems,'', Studies in Advanced Mathematics. Chapman & Hall/CRC, (2005).   Google Scholar

[3]

J. Cresson and C. Guillet, Hyperbolicity versus partial-hyperbolicity and the transversality-torsion phenomenon,, J. Differential Equations, 244 (2008), 2123.  doi: 10.1016/j.jde.2008.02.009.  Google Scholar

[4]

A. Delshams, M. Gidea and P. Roldan, Arnold's mechanism of diffusion in the spatial circular restricted three-body problem: A semi-numerical argument,, preprint, (2010).   Google Scholar

[5]

A. Delshams, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of $T^2$,, Comm. Math. Phys., 209 (2000), 353.   Google Scholar

[6]

A. Delshams, R. de la Llave and T. M. Seara, A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model,, Mem. Amer. Math. Soc., 179 (2006).   Google Scholar

[7]

A. Delshams, R. de la Llave and T. M. Seara, Geometric properties of the scattering map of a normally hyperbolic invariant manifold,, Adv. Math., 217 (2008), 1096.  doi: 10.1016/j.aim.2007.08.014.  Google Scholar

[8]

A. Delshams, M. Gidea, R. de la Llave and T. M. Seara, Geometric approaches to the problem of instability in Hamiltonian systems. An informal presentation,, in (Hamiltonian dynamical systems and applications), (2008), 285.   Google Scholar

[9]

A. Delshams, J. Masdemont and P. Roldán, Computing the scattering map in the spatial Hill's problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 455.  doi: 10.3934/dcdsb.2008.10.455.  Google Scholar

[10]

R. W. Easton, Homoclinic phenomena in Hamiltonian systems with several degrees of freedom,, J. Differential Equations, 29 (1978), 241.  doi: 10.1016/0022-0396(78)90123-7.  Google Scholar

[11]

N. Fenichel, Asymptotic stability with rate conditions,, Indiana Univ. Math. J., 23 (): 1109.   Google Scholar

[12]

A. García, Transition tori near an elliptic fixed point,, Discrete Contin. Dynam. Systems, 6 (2000), 381.   Google Scholar

[13]

M. Gidea and R. de la Llave, Topological methods in the instability problem of Hamiltonian systems,, Discrete Contin. Dyn. Syst., 14 (2006), 295.   Google Scholar

[14]

M. Gidea and C. Robinson, Topologically crossing heteroclinic connections to invariant tori,, J. Differential Equations, 193 (2003), 49.  doi: 10.1016/S0022-0396(03)00065-2.  Google Scholar

[15]

M. Gidea and C. Robinson, Obstruction argument for transition chains of tori interspersed with gaps,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 393.   Google Scholar

[16]

M. Gidea, and C. Robinson, Diffusion along transition chains of invariant tori and Aubry-Mather sets,, Ergodic Theory and Dynamical Systems, ().  doi: 10.1017/S0143385712000363.  Google Scholar

[17]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,'', Lecture Notes in Math., (1977).   Google Scholar

[18]

H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces,, Ann. of Math. (2), 148 (1998), 197.   Google Scholar

[19]

J. P. Marco, A normally hyperbolic lambda lemma with applications to diffusion,, Preprint, (2008).   Google Scholar

[20]

C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and flows,, Invent. Math., 10 (1970), 187.  doi: 10.1007/BF01403247.  Google Scholar

[21]

C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', Studies in Advanced Mathematics. CRC Press, (1999).   Google Scholar

[22]

P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems,, J. Differential Equations, 202 (2004), 32.  doi: 10.1016/j.jde.2004.03.013.  Google Scholar

[1]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]