March  2013, 33(3): 1113-1116. doi: 10.3934/dcds.2013.33.1113

Are the geometries of the first and second laws of thermodynamics compatible?

1. 

Sección de Metodología y Teoría de la Ciencia, Cinvestav, Av. IPN 2508, C.P. 07360, México, D.F., Mexico

2. 

Departamento de Matemáticas, Universidad Autónoma Metropolitana–Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340 México, D.F., Mexico

Received  April 2011 Revised  November 2011 Published  October 2012

First and second laws of thermodynamics are naturally associated, respectively, to contact and Hessian geometries. In this paper we seek for a unique geometric setting that might account for both thermodynamic laws. Using Riemannian metrics that are compatible with the contact structure, we prove that the Hessian manifold of thermodynamic states cannot isometrically be embedded as Legendre submanifold of a contact manifold. Well known fibrations suggest the nature of the obstruction for such embedding.
Citation: Gerardo Hernández, Ernesto A. Lacomba. Are the geometries of the first and second laws of thermodynamics compatible?. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1113-1116. doi: 10.3934/dcds.2013.33.1113
References:
[1]

D. E. Blair, "Riemannian Geometry of Contact and Symplectic Manifolds,", $2^{nd}$ edition, (2010).   Google Scholar

[2]

W. M. Boothby and H. C. Wang, On contact manifolds,, Ann. of Math., 68 (1958), 721.  doi: 10.2307/1970165.  Google Scholar

[3]

H. B. Callen, "Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics,", John Wiley and Sons, (1960).   Google Scholar

[4]

Y. Hatakeyama, Some notes on differentiable manifolds with almost contact structures,, Tohoku Math. J., 15 (1963), 176.  doi: 10.2748/tmj/1178243844.  Google Scholar

[5]

R. Hermann, "Geometry, Physics, and Systems,", Pure and Applied Mathematics, (1973).   Google Scholar

[6]

S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group,, Toku Math. J., 8 (1956), 29.   Google Scholar

[7]

A. Morimoto, On normal almost contact structures with a regularity,, Toku Math. J., 16 (1964), 90.  doi: 10.2748/tmj/1178243735.  Google Scholar

[8]

R. Mrugala, Geometrical formulation of equilibrium phenomenological thermodynamics,, Reports on Mathematical Physics, 14 (1978), 419.  doi: 10.1016/0034-4877(78)90010-1.  Google Scholar

[9]

R. Mrugala, Submanifolds in the thermodynamic phase space,, Math. Phys., 21 (1985), 197.   Google Scholar

[10]

R. Mrugala, J. D. Nulton, J. C. Schön and P. Salamon, Statistical approach to the geometric structure of thermodynamics,, Phys. Rev. A, 41 (1990), 3156.  doi: 10.1103/PhysRevA.41.3156.  Google Scholar

[11]

J. Nulton and P. Salamon, Geometry of the ideal gas,, Phys. Rev. A, 31 (1985), 2520.  doi: 10.1103/PhysRevA.31.2520.  Google Scholar

[12]

G. Ruppeiner, Thermodynamics: A riemannian geometric model,, Phys. Rev. A, 20 (1979), 1608.  doi: 10.1103/PhysRevA.20.1608.  Google Scholar

[13]

P. Salamon, E. Ihrig and R. S. Berry, A group of coordinate transformations which preserve the metric of Weinhold,, J. Math. Phys., 24 (1983), 2515.  doi: 10.1063/1.525629.  Google Scholar

[14]

H. Shima, "The Geometry of Hessian Structures,", World Scienfific, (2007).   Google Scholar

[15]

F. Weinhold, Metric geometry of equilibrium thermodynamics,, J. Chem. Phys., 63 (1975), 2479.  doi: 10.1063/1.431635.  Google Scholar

[16]

F. Weinhold, Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs-Duhem relations,, J. Chem. Phys., 63 (1975), 2484.  doi: 10.1063/1.431635.  Google Scholar

[17]

F. Weinhold, Metric geometry of equilibrium thermodynamics. III. Elementary formal structure of a vector-algebraic representation of equilibrium thermodynamics,, J. Chem. Phys., 63 (1975), 2488.  doi: 10.1063/1.431636.  Google Scholar

[18]

F. Weinhold, Metric geometry of equilibrium thermodynamics. IV. Vector-algebraic evaluation of thermodynamic derivatives,, J. Chem. Phys., 63 (1975), 2496.  doi: 10.1063/1.431637.  Google Scholar

show all references

References:
[1]

D. E. Blair, "Riemannian Geometry of Contact and Symplectic Manifolds,", $2^{nd}$ edition, (2010).   Google Scholar

[2]

W. M. Boothby and H. C. Wang, On contact manifolds,, Ann. of Math., 68 (1958), 721.  doi: 10.2307/1970165.  Google Scholar

[3]

H. B. Callen, "Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics,", John Wiley and Sons, (1960).   Google Scholar

[4]

Y. Hatakeyama, Some notes on differentiable manifolds with almost contact structures,, Tohoku Math. J., 15 (1963), 176.  doi: 10.2748/tmj/1178243844.  Google Scholar

[5]

R. Hermann, "Geometry, Physics, and Systems,", Pure and Applied Mathematics, (1973).   Google Scholar

[6]

S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group,, Toku Math. J., 8 (1956), 29.   Google Scholar

[7]

A. Morimoto, On normal almost contact structures with a regularity,, Toku Math. J., 16 (1964), 90.  doi: 10.2748/tmj/1178243735.  Google Scholar

[8]

R. Mrugala, Geometrical formulation of equilibrium phenomenological thermodynamics,, Reports on Mathematical Physics, 14 (1978), 419.  doi: 10.1016/0034-4877(78)90010-1.  Google Scholar

[9]

R. Mrugala, Submanifolds in the thermodynamic phase space,, Math. Phys., 21 (1985), 197.   Google Scholar

[10]

R. Mrugala, J. D. Nulton, J. C. Schön and P. Salamon, Statistical approach to the geometric structure of thermodynamics,, Phys. Rev. A, 41 (1990), 3156.  doi: 10.1103/PhysRevA.41.3156.  Google Scholar

[11]

J. Nulton and P. Salamon, Geometry of the ideal gas,, Phys. Rev. A, 31 (1985), 2520.  doi: 10.1103/PhysRevA.31.2520.  Google Scholar

[12]

G. Ruppeiner, Thermodynamics: A riemannian geometric model,, Phys. Rev. A, 20 (1979), 1608.  doi: 10.1103/PhysRevA.20.1608.  Google Scholar

[13]

P. Salamon, E. Ihrig and R. S. Berry, A group of coordinate transformations which preserve the metric of Weinhold,, J. Math. Phys., 24 (1983), 2515.  doi: 10.1063/1.525629.  Google Scholar

[14]

H. Shima, "The Geometry of Hessian Structures,", World Scienfific, (2007).   Google Scholar

[15]

F. Weinhold, Metric geometry of equilibrium thermodynamics,, J. Chem. Phys., 63 (1975), 2479.  doi: 10.1063/1.431635.  Google Scholar

[16]

F. Weinhold, Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs-Duhem relations,, J. Chem. Phys., 63 (1975), 2484.  doi: 10.1063/1.431635.  Google Scholar

[17]

F. Weinhold, Metric geometry of equilibrium thermodynamics. III. Elementary formal structure of a vector-algebraic representation of equilibrium thermodynamics,, J. Chem. Phys., 63 (1975), 2488.  doi: 10.1063/1.431636.  Google Scholar

[18]

F. Weinhold, Metric geometry of equilibrium thermodynamics. IV. Vector-algebraic evaluation of thermodynamic derivatives,, J. Chem. Phys., 63 (1975), 2496.  doi: 10.1063/1.431637.  Google Scholar

[1]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[2]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[5]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[9]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[10]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[11]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[12]

Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021010

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]