Citation: |
[1] |
D. E. Blair, "Riemannian Geometry of Contact and Symplectic Manifolds," $2^{nd}$ edition, Birkhser, Boston, MA, 2010. |
[2] |
W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math., 68 (1958), 721-734.doi: 10.2307/1970165. |
[3] |
H. B. Callen, "Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics," John Wiley and Sons, New York, 1960. |
[4] |
Y. Hatakeyama, Some notes on differentiable manifolds with almost contact structures, Tohoku Math. J., 15 (1963), 176-181.doi: 10.2748/tmj/1178243844. |
[5] |
R. Hermann, "Geometry, Physics, and Systems," Pure and Applied Mathematics, Vol. 18, Marcel Dekker, INc., New York, 1973. |
[6] |
S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Toku Math. J., 8 (1956), 29-45. |
[7] |
A. Morimoto, On normal almost contact structures with a regularity, Toku Math. J., 16 (1964), 90-104.doi: 10.2748/tmj/1178243735. |
[8] |
R. Mrugala, Geometrical formulation of equilibrium phenomenological thermodynamics, Reports on Mathematical Physics, 14 (1978), 419-427.doi: 10.1016/0034-4877(78)90010-1. |
[9] |
R. Mrugala, Submanifolds in the thermodynamic phase space, Math. Phys., 21 (1985), 197-203. |
[10] |
R. Mrugala, J. D. Nulton, J. C. Schön and P. Salamon, Statistical approach to the geometric structure of thermodynamics, Phys. Rev. A, 41 (1990), 3156-3160.doi: 10.1103/PhysRevA.41.3156. |
[11] |
J. Nulton and P. Salamon, Geometry of the ideal gas, Phys. Rev. A, 31 (1985), 2520-2524.doi: 10.1103/PhysRevA.31.2520. |
[12] |
G. Ruppeiner, Thermodynamics: A riemannian geometric model, Phys. Rev. A, 20 (1979), 1608-1613.doi: 10.1103/PhysRevA.20.1608. |
[13] |
P. Salamon, E. Ihrig and R. S. Berry, A group of coordinate transformations which preserve the metric of Weinhold, J. Math. Phys., 24 (1983), 2515-2520.doi: 10.1063/1.525629. |
[14] |
H. Shima, "The Geometry of Hessian Structures," World Scienfific, Singapore, 2007. |
[15] |
F. Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys., 63 (1975), 2479-2483.doi: 10.1063/1.431635. |
[16] |
F. Weinhold, Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs-Duhem relations, J. Chem. Phys., 63 (1975), 2484-2487.doi: 10.1063/1.431635. |
[17] |
F. Weinhold, Metric geometry of equilibrium thermodynamics. III. Elementary formal structure of a vector-algebraic representation of equilibrium thermodynamics, J. Chem. Phys., 63 (1975), 2488-2495.doi: 10.1063/1.431636. |
[18] |
F. Weinhold, Metric geometry of equilibrium thermodynamics. IV. Vector-algebraic evaluation of thermodynamic derivatives, J. Chem. Phys., 63 (1975), 2496-2501.doi: 10.1063/1.431637. |