\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Are the geometries of the first and second laws of thermodynamics compatible?

Abstract Related Papers Cited by
  • First and second laws of thermodynamics are naturally associated, respectively, to contact and Hessian geometries. In this paper we seek for a unique geometric setting that might account for both thermodynamic laws. Using Riemannian metrics that are compatible with the contact structure, we prove that the Hessian manifold of thermodynamic states cannot isometrically be embedded as Legendre submanifold of a contact manifold. Well known fibrations suggest the nature of the obstruction for such embedding.
    Mathematics Subject Classification: Primary: 53D10, 53Z05; Secondary: 80A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. E. Blair, "Riemannian Geometry of Contact and Symplectic Manifolds," $2^{nd}$ edition, Birkhser, Boston, MA, 2010.

    [2]

    W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math., 68 (1958), 721-734.doi: 10.2307/1970165.

    [3]

    H. B. Callen, "Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics," John Wiley and Sons, New York, 1960.

    [4]

    Y. Hatakeyama, Some notes on differentiable manifolds with almost contact structures, Tohoku Math. J., 15 (1963), 176-181.doi: 10.2748/tmj/1178243844.

    [5]

    R. Hermann, "Geometry, Physics, and Systems," Pure and Applied Mathematics, Vol. 18, Marcel Dekker, INc., New York, 1973.

    [6]

    S. Kobayashi, Principal fibre bundles with the 1-dimensional toroidal group, Toku Math. J., 8 (1956), 29-45.

    [7]

    A. Morimoto, On normal almost contact structures with a regularity, Toku Math. J., 16 (1964), 90-104.doi: 10.2748/tmj/1178243735.

    [8]

    R. Mrugala, Geometrical formulation of equilibrium phenomenological thermodynamics, Reports on Mathematical Physics, 14 (1978), 419-427.doi: 10.1016/0034-4877(78)90010-1.

    [9]

    R. Mrugala, Submanifolds in the thermodynamic phase space, Math. Phys., 21 (1985), 197-203.

    [10]

    R. Mrugala, J. D. Nulton, J. C. Schön and P. Salamon, Statistical approach to the geometric structure of thermodynamics, Phys. Rev. A, 41 (1990), 3156-3160.doi: 10.1103/PhysRevA.41.3156.

    [11]

    J. Nulton and P. Salamon, Geometry of the ideal gas, Phys. Rev. A, 31 (1985), 2520-2524.doi: 10.1103/PhysRevA.31.2520.

    [12]

    G. Ruppeiner, Thermodynamics: A riemannian geometric model, Phys. Rev. A, 20 (1979), 1608-1613.doi: 10.1103/PhysRevA.20.1608.

    [13]

    P. Salamon, E. Ihrig and R. S. Berry, A group of coordinate transformations which preserve the metric of Weinhold, J. Math. Phys., 24 (1983), 2515-2520.doi: 10.1063/1.525629.

    [14]

    H. Shima, "The Geometry of Hessian Structures," World Scienfific, Singapore, 2007.

    [15]

    F. Weinhold, Metric geometry of equilibrium thermodynamics, J. Chem. Phys., 63 (1975), 2479-2483.doi: 10.1063/1.431635.

    [16]

    F. Weinhold, Metric geometry of equilibrium thermodynamics. II. Scaling, homogeneity, and generalized Gibbs-Duhem relations, J. Chem. Phys., 63 (1975), 2484-2487.doi: 10.1063/1.431635.

    [17]

    F. Weinhold, Metric geometry of equilibrium thermodynamics. III. Elementary formal structure of a vector-algebraic representation of equilibrium thermodynamics, J. Chem. Phys., 63 (1975), 2488-2495.doi: 10.1063/1.431636.

    [18]

    F. Weinhold, Metric geometry of equilibrium thermodynamics. IV. Vector-algebraic evaluation of thermodynamic derivatives, J. Chem. Phys., 63 (1975), 2496-2501.doi: 10.1063/1.431637.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return