March  2013, 33(3): 1117-1135. doi: 10.3934/dcds.2013.33.1117

Discrete dynamics in implicit form

1. 

Unidad asociada ULL-CSIC “Geometría Diferencial y Mecánica Geométrica”, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain

2. 

Unidad asociada ULL-CSIC Geometría Diferencial y Mecánica Geométrica, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain

3. 

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Campus de Cantoblanco, UAM, C/Nicolás Cabrera, 15, 28049 Madrid, Spain

Received  April 2011 Revised  November 2011 Published  October 2012

A notion of implicit difference equation on a Lie groupoid is introduced and an algorithm for extracting the integrable part (backward or/and forward) is formulated. As an application, we prove that discrete Lagrangian dynamics on a Lie groupoid $G$ may be described in terms of Lagrangian implicit difference equations of the corresponding cotangent groupoid $T^*G$. Other situations include finite difference methods for time-dependent linear differential-algebraic equations and discrete nonholonomic Lagrangian systems, as parti-cular examples.
Citation: David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117
References:
[1]

C. D. Ahlbrandt and A. P. Peterson, "Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, And Riccati Equations," Kluwer Texts in the Mathematical Sciences, Kluwer, Netherlands, 1996.

[2]

J. F. Cariñena, Theory of singular lagrangians, Fortschr. Phys., 38 (1990), 641-679. doi: 10.1002/prop.2190380902.

[3]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations, J. Phys. A, 39 (2006), 10975-11001. doi: 10.1088/0305-4470/39/35/003.

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Soc., 152 (2001), x+108 pp.

[5]

A. Coste, P. Dazord and A. Weinstein, Grupoï des symplectiques, (French) [Symplectic groupoids], Pub. Dép. Math. Lyon, 2/A (1987), 1-62.

[6]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math., 157 (2003), 575-620. doi: 10.4007/annals.2003.157.575.

[7]

Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem, SIGMA, 3 (2007), 15 pp.

[8]

Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups, Nonli-nearity, 18 (2005), 2211-2241.

[9]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations," Springer Series in Computational Mathematics vol. 31, Springer-Verlag, Berlig, 2002.

[10]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on Lie groupoids, J. Nonlinear Sci, 18 (2008), 221-276. doi: 10.1007/s00332-007-9012-8.

[11]

D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular lagrangian systems and variational constrained mechanics on Lie algebroids, Dynamical Systems, 23 (2008), 351-397.

[12]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241-R308. doi: 10.1088/0305-4470/38/24/R01.

[13]

K. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids," London Mathematical Society Lecture Note Series vol. 213, Cambridge University Press, Cambridge, 2005.

[14]

G. Marmo, G. Mendella and W. M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form, Ann. Inst. Henri Poincaré, 57 (1992), 147-166.

[15]

G. Marmo, G. Mendella and W. M. Tulczyjew, Integrability of implicit differential equations, J. Phys. A: Math. Gen. 30 (1995), 149-163.

[16]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations, J. Phys. A: Math. Gen., 30 (1997), 277-293. doi: 10.1088/0305-4470/30/1/020.

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514. doi: 10.1017/S096249290100006X.

[18]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348. Corrigendum: Nonlinearity, 19 (2006), 3003-3004. doi: 10.1088/0951-7715/19/6/006.

[19]

J. C. Marrero, D. Martín de Diego and E. Martínez, The exact discrete lagrangian function on Lie groupoids and some applications, work in progress.

[20]

J. C. Marrero, D. Martín de Diego and A. Stern, Lagrangian submanifolds and discrete constrained mechanics on Lie groupoids, preprint, arXiv:1103.6250.

[21]

J. Neimark and N. Fufaev, "Dynamics On Nonholonomic Systems," Translation of Mathematics Monographs, vol. 33, AMS, Providence, RI, 1972.

[22]

L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications, SIAM J. Sci. Statist. Comput., 7 (1986), 720-733.

[23]

P. J. Rabier and W. C. Rheinboldt, Finite difference methods for time dependent, linear differential algebraic equations, Appl. Math. Lett., 7 (1994), 29-34.

[24]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems," Chapman & Hall, London 1994

[25]

A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids, J. Symplectic Geom., 8 (2010), 225-238.

[26]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sci. Paris, 283 (1976), 15-18.

[27]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris, 283 (1976), 675-678.

[28]

A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40 (1988), 705-727. doi: 10.2969/jmsj/04040705.

[29]

A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Comm., 7 (1996), 207-231.

show all references

References:
[1]

C. D. Ahlbrandt and A. P. Peterson, "Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, And Riccati Equations," Kluwer Texts in the Mathematical Sciences, Kluwer, Netherlands, 1996.

[2]

J. F. Cariñena, Theory of singular lagrangians, Fortschr. Phys., 38 (1990), 641-679. doi: 10.1002/prop.2190380902.

[3]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations, J. Phys. A, 39 (2006), 10975-11001. doi: 10.1088/0305-4470/39/35/003.

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Soc., 152 (2001), x+108 pp.

[5]

A. Coste, P. Dazord and A. Weinstein, Grupoï des symplectiques, (French) [Symplectic groupoids], Pub. Dép. Math. Lyon, 2/A (1987), 1-62.

[6]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math., 157 (2003), 575-620. doi: 10.4007/annals.2003.157.575.

[7]

Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem, SIGMA, 3 (2007), 15 pp.

[8]

Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups, Nonli-nearity, 18 (2005), 2211-2241.

[9]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations," Springer Series in Computational Mathematics vol. 31, Springer-Verlag, Berlig, 2002.

[10]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on Lie groupoids, J. Nonlinear Sci, 18 (2008), 221-276. doi: 10.1007/s00332-007-9012-8.

[11]

D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular lagrangian systems and variational constrained mechanics on Lie algebroids, Dynamical Systems, 23 (2008), 351-397.

[12]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241-R308. doi: 10.1088/0305-4470/38/24/R01.

[13]

K. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids," London Mathematical Society Lecture Note Series vol. 213, Cambridge University Press, Cambridge, 2005.

[14]

G. Marmo, G. Mendella and W. M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form, Ann. Inst. Henri Poincaré, 57 (1992), 147-166.

[15]

G. Marmo, G. Mendella and W. M. Tulczyjew, Integrability of implicit differential equations, J. Phys. A: Math. Gen. 30 (1995), 149-163.

[16]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations, J. Phys. A: Math. Gen., 30 (1997), 277-293. doi: 10.1088/0305-4470/30/1/020.

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514. doi: 10.1017/S096249290100006X.

[18]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348. Corrigendum: Nonlinearity, 19 (2006), 3003-3004. doi: 10.1088/0951-7715/19/6/006.

[19]

J. C. Marrero, D. Martín de Diego and E. Martínez, The exact discrete lagrangian function on Lie groupoids and some applications, work in progress.

[20]

J. C. Marrero, D. Martín de Diego and A. Stern, Lagrangian submanifolds and discrete constrained mechanics on Lie groupoids, preprint, arXiv:1103.6250.

[21]

J. Neimark and N. Fufaev, "Dynamics On Nonholonomic Systems," Translation of Mathematics Monographs, vol. 33, AMS, Providence, RI, 1972.

[22]

L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications, SIAM J. Sci. Statist. Comput., 7 (1986), 720-733.

[23]

P. J. Rabier and W. C. Rheinboldt, Finite difference methods for time dependent, linear differential algebraic equations, Appl. Math. Lett., 7 (1994), 29-34.

[24]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems," Chapman & Hall, London 1994

[25]

A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids, J. Symplectic Geom., 8 (2010), 225-238.

[26]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sci. Paris, 283 (1976), 15-18.

[27]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris, 283 (1976), 675-678.

[28]

A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40 (1988), 705-727. doi: 10.2969/jmsj/04040705.

[29]

A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Comm., 7 (1996), 207-231.

[1]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[2]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[3]

Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105

[4]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[5]

Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo, Luca Schiavone. Schwinger's picture of quantum mechanics: 2-groupoids and symmetries. Journal of Geometric Mechanics, 2021, 13 (3) : 333-354. doi: 10.3934/jgm.2021008

[6]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[7]

Víctor Manuel Jiménez Morales, Manuel De León, Marcelo Epstein. Lie groupoids and algebroids applied to the study of uniformity and homogeneity of material bodies. Journal of Geometric Mechanics, 2019, 11 (3) : 301-324. doi: 10.3934/jgm.2019017

[8]

Theodore Voronov. Book review: General theory of Lie groupoids and Lie algebroids, by Kirill C. H. Mackenzie. Journal of Geometric Mechanics, 2021, 13 (3) : 277-283. doi: 10.3934/jgm.2021026

[9]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[10]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[11]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2155-2185. doi: 10.3934/cpaa.2021062

[12]

Farid Tari. Two-parameter families of implicit differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139

[13]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[14]

Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323

[15]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[16]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[17]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[18]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[19]

Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

[20]

Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (5)

[Back to Top]