March  2013, 33(3): 1117-1135. doi: 10.3934/dcds.2013.33.1117

Discrete dynamics in implicit form

1. 

Unidad asociada ULL-CSIC “Geometría Diferencial y Mecánica Geométrica”, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain

2. 

Unidad asociada ULL-CSIC Geometría Diferencial y Mecánica Geométrica, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, La Laguna, Tenerife, Canary Islands, Spain

3. 

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Campus de Cantoblanco, UAM, C/Nicolás Cabrera, 15, 28049 Madrid, Spain

Received  April 2011 Revised  November 2011 Published  October 2012

A notion of implicit difference equation on a Lie groupoid is introduced and an algorithm for extracting the integrable part (backward or/and forward) is formulated. As an application, we prove that discrete Lagrangian dynamics on a Lie groupoid $G$ may be described in terms of Lagrangian implicit difference equations of the corresponding cotangent groupoid $T^*G$. Other situations include finite difference methods for time-dependent linear differential-algebraic equations and discrete nonholonomic Lagrangian systems, as parti-cular examples.
Citation: David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117
References:
[1]

C. D. Ahlbrandt and A. P. Peterson, "Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, And Riccati Equations,", Kluwer Texts in the Mathematical Sciences, (1996).   Google Scholar

[2]

J. F. Cariñena, Theory of singular lagrangians,, Fortschr. Phys., 38 (1990), 641.  doi: 10.1002/prop.2190380902.  Google Scholar

[3]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975.  doi: 10.1088/0305-4470/39/35/003.  Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Soc., 152 (2001).   Google Scholar

[5]

A. Coste, P. Dazord and A. Weinstein, Grupoï des symplectiques,, (French) [Symplectic groupoids], 2/A (1987), 1.   Google Scholar

[6]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[7]

Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem,, SIGMA, 3 (2007).   Google Scholar

[8]

Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups,, Nonli-nearity, 18 (2005), 2211.   Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", Springer Series in Computational Mathematics vol. 31, (2002).   Google Scholar

[10]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on Lie groupoids,, J. Nonlinear Sci, 18 (2008), 221.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[11]

D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular lagrangian systems and variational constrained mechanics on Lie algebroids,, Dynamical Systems, 23 (2008), 351.   Google Scholar

[12]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[13]

K. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series vol. 213, (2005).   Google Scholar

[14]

G. Marmo, G. Mendella and W. M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form,, Ann. Inst. Henri Poincaré, 57 (1992), 147.   Google Scholar

[15]

G. Marmo, G. Mendella and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A: Math. Gen. 30 (1995), 30 (1995), 149.   Google Scholar

[16]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A: Math. Gen., 30 (1997), 277.  doi: 10.1088/0305-4470/30/1/020.  Google Scholar

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[18]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.  doi: 10.1088/0951-7715/19/6/006.  Google Scholar

[19]

J. C. Marrero, D. Martín de Diego and E. Martínez, The exact discrete lagrangian function on Lie groupoids and some applications,, work in progress., ().   Google Scholar

[20]

J. C. Marrero, D. Martín de Diego and A. Stern, Lagrangian submanifolds and discrete constrained mechanics on Lie groupoids,, preprint, ().   Google Scholar

[21]

J. Neimark and N. Fufaev, "Dynamics On Nonholonomic Systems,", Translation of Mathematics Monographs, (1972).   Google Scholar

[22]

L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications,, SIAM J. Sci. Statist. Comput., 7 (1986), 720.   Google Scholar

[23]

P. J. Rabier and W. C. Rheinboldt, Finite difference methods for time dependent, linear differential algebraic equations,, Appl. Math. Lett., 7 (1994), 29.   Google Scholar

[24]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman & Hall, (1994).   Google Scholar

[25]

A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids,, J. Symplectic Geom., 8 (2010), 225.   Google Scholar

[26]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne,, C. R. Acad. Sci. Paris, 283 (1976), 15.   Google Scholar

[27]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne,, C. R. Acad. Sci. Paris, 283 (1976), 675.   Google Scholar

[28]

A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705.  doi: 10.2969/jmsj/04040705.  Google Scholar

[29]

A. Weinstein, Lagrangian mechanics and groupoids,, Fields Inst. Comm., 7 (1996), 207.   Google Scholar

show all references

References:
[1]

C. D. Ahlbrandt and A. P. Peterson, "Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, And Riccati Equations,", Kluwer Texts in the Mathematical Sciences, (1996).   Google Scholar

[2]

J. F. Cariñena, Theory of singular lagrangians,, Fortschr. Phys., 38 (1990), 641.  doi: 10.1002/prop.2190380902.  Google Scholar

[3]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975.  doi: 10.1088/0305-4470/39/35/003.  Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Soc., 152 (2001).   Google Scholar

[5]

A. Coste, P. Dazord and A. Weinstein, Grupoï des symplectiques,, (French) [Symplectic groupoids], 2/A (1987), 1.   Google Scholar

[6]

M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math., 157 (2003), 575.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[7]

Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem,, SIGMA, 3 (2007).   Google Scholar

[8]

Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups,, Nonli-nearity, 18 (2005), 2211.   Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,", Springer Series in Computational Mathematics vol. 31, (2002).   Google Scholar

[10]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on Lie groupoids,, J. Nonlinear Sci, 18 (2008), 221.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[11]

D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular lagrangian systems and variational constrained mechanics on Lie algebroids,, Dynamical Systems, 23 (2008), 351.   Google Scholar

[12]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[13]

K. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series vol. 213, (2005).   Google Scholar

[14]

G. Marmo, G. Mendella and W. M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form,, Ann. Inst. Henri Poincaré, 57 (1992), 147.   Google Scholar

[15]

G. Marmo, G. Mendella and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A: Math. Gen. 30 (1995), 30 (1995), 149.   Google Scholar

[16]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A: Math. Gen., 30 (1997), 277.  doi: 10.1088/0305-4470/30/1/020.  Google Scholar

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[18]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.  doi: 10.1088/0951-7715/19/6/006.  Google Scholar

[19]

J. C. Marrero, D. Martín de Diego and E. Martínez, The exact discrete lagrangian function on Lie groupoids and some applications,, work in progress., ().   Google Scholar

[20]

J. C. Marrero, D. Martín de Diego and A. Stern, Lagrangian submanifolds and discrete constrained mechanics on Lie groupoids,, preprint, ().   Google Scholar

[21]

J. Neimark and N. Fufaev, "Dynamics On Nonholonomic Systems,", Translation of Mathematics Monographs, (1972).   Google Scholar

[22]

L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications,, SIAM J. Sci. Statist. Comput., 7 (1986), 720.   Google Scholar

[23]

P. J. Rabier and W. C. Rheinboldt, Finite difference methods for time dependent, linear differential algebraic equations,, Appl. Math. Lett., 7 (1994), 29.   Google Scholar

[24]

J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems,", Chapman & Hall, (1994).   Google Scholar

[25]

A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids,, J. Symplectic Geom., 8 (2010), 225.   Google Scholar

[26]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne,, C. R. Acad. Sci. Paris, 283 (1976), 15.   Google Scholar

[27]

W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne,, C. R. Acad. Sci. Paris, 283 (1976), 675.   Google Scholar

[28]

A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705.  doi: 10.2969/jmsj/04040705.  Google Scholar

[29]

A. Weinstein, Lagrangian mechanics and groupoids,, Fields Inst. Comm., 7 (1996), 207.   Google Scholar

[1]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[2]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[3]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[4]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124

[5]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[6]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[7]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[8]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[9]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[13]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[14]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[15]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[16]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[17]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[18]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[19]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[20]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (4)

[Back to Top]