\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Discrete dynamics in implicit form

Abstract Related Papers Cited by
  • A notion of implicit difference equation on a Lie groupoid is introduced and an algorithm for extracting the integrable part (backward or/and forward) is formulated. As an application, we prove that discrete Lagrangian dynamics on a Lie groupoid $G$ may be described in terms of Lagrangian implicit difference equations of the corresponding cotangent groupoid $T^*G$. Other situations include finite difference methods for time-dependent linear differential-algebraic equations and discrete nonholonomic Lagrangian systems, as parti-cular examples.
    Mathematics Subject Classification: Primary: 34K32, 22A22; Secondary: 17B66, 37M15, 57D17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. D. Ahlbrandt and A. P. Peterson, "Discrete Hamiltonian Systems. Difference Equations, Continued Fractions, And Riccati Equations," Kluwer Texts in the Mathematical Sciences, Kluwer, Netherlands, 1996.

    [2]

    J. F. Cariñena, Theory of singular lagrangians, Fortschr. Phys., 38 (1990), 641-679.doi: 10.1002/prop.2190380902.

    [3]

    H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations, J. Phys. A, 39 (2006), 10975-11001.doi: 10.1088/0305-4470/39/35/003.

    [4]

    H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Soc., 152 (2001), x+108 pp.

    [5]

    A. Coste, P. Dazord and A. Weinstein, Grupoï des symplectiques, (French) [Symplectic groupoids], Pub. Dép. Math. Lyon, 2/A (1987), 1-62.

    [6]

    M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math., 157 (2003), 575-620.doi: 10.4007/annals.2003.157.575.

    [7]

    Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem, SIGMA, 3 (2007), 15 pp.

    [8]

    Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups, Nonli-nearity, 18 (2005), 2211-2241.

    [9]

    E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations," Springer Series in Computational Mathematics vol. 31, Springer-Verlag, Berlig, 2002.

    [10]

    D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic lagrangian systems on Lie groupoids, J. Nonlinear Sci, 18 (2008), 221-276.doi: 10.1007/s00332-007-9012-8.

    [11]

    D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular lagrangian systems and variational constrained mechanics on Lie algebroids, Dynamical Systems, 23 (2008), 351-397.

    [12]

    M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241-R308.doi: 10.1088/0305-4470/38/24/R01.

    [13]

    K. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids," London Mathematical Society Lecture Note Series vol. 213, Cambridge University Press, Cambridge, 2005.

    [14]

    G. Marmo, G. Mendella and W. M. Tulczyjew, Symmetries and constants of the motion for dynamics in implicit form, Ann. Inst. Henri Poincaré, 57 (1992), 147-166.

    [15]

    G. Marmo, G. Mendella and W. M. Tulczyjew, Integrability of implicit differential equations, J. Phys. A: Math. Gen. 30 (1995), 149-163.

    [16]

    G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations, J. Phys. A: Math. Gen., 30 (1997), 277-293.doi: 10.1088/0305-4470/30/1/020.

    [17]

    J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.doi: 10.1017/S096249290100006X.

    [18]

    J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete lagrangian and hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348. Corrigendum: Nonlinearity, 19 (2006), 3003-3004.doi: 10.1088/0951-7715/19/6/006.

    [19]

    J. C. Marrero, D. Martín de Diego and E. MartínezThe exact discrete lagrangian function on Lie groupoids and some applications, work in progress.

    [20]

    J. C. Marrero, D. Martín de Diego and A. SternLagrangian submanifolds and discrete constrained mechanics on Lie groupoids, preprint, arXiv:1103.6250.

    [21]

    J. Neimark and N. Fufaev, "Dynamics On Nonholonomic Systems," Translation of Mathematics Monographs, vol. 33, AMS, Providence, RI, 1972.

    [22]

    L. Petzold and P. Lötstedt, Numerical solution of nonlinear differential equations with algebraic constraints. II. Practical implications, SIAM J. Sci. Statist. Comput., 7 (1986), 720-733.

    [23]

    P. J. Rabier and W. C. Rheinboldt, Finite difference methods for time dependent, linear differential algebraic equations, Appl. Math. Lett., 7 (1994), 29-34.

    [24]

    J. M. Sanz-Serna and M. P. Calvo, "Numerical Hamiltonian Problems," Chapman & Hall, London 1994

    [25]

    A. Stern, Discrete Hamilton-Pontryagin mechanics and generating functions on Lie groupoids, J. Symplectic Geom., 8 (2010), 225-238.

    [26]

    W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sci. Paris, 283 (1976), 15-18.

    [27]

    W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris, 283 (1976), 675-678.

    [28]

    A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40 (1988), 705-727.doi: 10.2969/jmsj/04040705.

    [29]

    A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Comm., 7 (1996), 207-231.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return