-
Previous Article
On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$
- DCDS Home
- This Issue
-
Next Article
Discrete dynamics in implicit form
Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses
1. | Department of Mathematics, Queen's University, Kingston, Ontario K7L 4V1, Canada |
2. | Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4, Canada, Canada |
References:
[1] |
V. I. Arnol'd, Characteristic class entering in quantization conditions,, Funct. Anal. Appl., 1 (1967), 1.
doi: 10.1007/BF01075861. |
[2] |
V. I. Arnol'd, "Dynamical Systems III,", Encyclopaedia Math. Sci., 3 (1988).
|
[3] |
V. I. Arnol'd, Sturm theorems and symplectic geometry,, Funct. Anal. Appl., 19 (1985), 251.
|
[4] |
E. Barrabés, J. M. Cors, C. Pinyol and J. Soler, Hip-hop solutions of the 2N-body problem,, Celest. Mech. Dynam. Astron., 95 (2006), 55.
doi: 10.1007/s10569-006-9016-y. |
[5] |
P. L. Buono, M. Kovacic, M. Lewis and D. Offin, Symmetry-breaking bifurcations of the hip-hop orbit,, in preparation., (). Google Scholar |
[6] |
A. Chenciner and R. Montgomery, On a remarkable periodic orbit of the three body problem in the case of equal masses,, Ann. Math., 152 (2000), 881.
doi: 10.2307/2661357. |
[7] |
A. Chenciner and A. Venturelli, Minima de l'intégrale d'action du problème Newtonien de 4 corps de masses égales dans $\mathbbR^3$: orbites 'hip-hop',, Celest. Mech. Dynam. Astron., 77 (2000), 139.
doi: 10.1023/A:1008381001328. |
[8] |
G. F. Dell'Antonio, Variational calculus and stability of periodic solutions of a class of Hamiltonian systems,, Reviews in Math. Physics, 6 (1994), 1187.
doi: 10.1142/S0129055X94000432. |
[9] |
J. J. Duistermaat, On the morse index in variational calculus,, Adv. Math., 21 (1976), 173.
doi: 10.1016/0001-8708(76)90074-8. |
[10] |
I. Ekeland, "Convexity Methods in Hamiltonian Systems,", Springer-Verlag, (1991). Google Scholar |
[11] |
D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem,, Inv. Math., 155 (2004), 305.
doi: 10.1007/s00222-003-0322-7. |
[12] |
W. B. Gordon, A minimizing property of Keplerian orbits,, Amer. J. Math., 99 (1970), 961.
doi: 10.2307/2373993. |
[13] |
X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit,, Comm. Math. Phys., 290 (2009), 737.
doi: 10.1007/s00220-009-0860-y. |
[14] |
J. Marsden, "Lectures on Mechanics,", Springer-Verlag, (1991). Google Scholar |
[15] |
C. Marchal, How the method of minimization of action avoids singularities,, Celest. Mech. Dynam. Astron., 83 (2002), 325.
doi: 10.1023/A:1020128408706. |
[16] |
V. P. Maslov, "Theory of Perturbations and Asymptotic Methods,", (Russian), (1965). Google Scholar |
[17] |
K. R. Meyer, Hamiltonian systems with a discrete symmetry,, J. Diff. Eqns., 41 (1981), 228.
doi: 10.1016/0022-0396(81)90059-0. |
[18] |
K. R. Meyer and D. S. Schmidt, Librations of central configurations and braided Saturn rings,, Celest. Mech. Dynam. Astron., 55 (1993), 289.
doi: 10.1007/BF00692516. |
[19] |
D. C. Offin, Hyperbolic minimizing geodesics,, Trans. Amer. Math. Soc., 352 (2000), 3323.
doi: 10.1090/S0002-9947-00-02483-1. |
[20] |
D. C. Offin and H. Cabral, Hyperbolicity for symmetric periodic orbits in the isosceles three body problem,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 379.
doi: 10.3934/dcdss.2009.2.379. |
[21] |
G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem,, Ergod. Th. & Dynam. Sys., 27 (2007), 1947.
|
[22] |
C. Simó, Dynamical properties of the figure eight solution of the three body problem,, Contemp. Math., 292 (2002), 209.
doi: 10.1090/conm/292/04926. |
[23] |
S. Terracini and A. Venturelli, Symmetric trajectories for the 2N-body problem with equal masses,, Arch. Rational. Mech. Anal., 184 (2007), 465.
doi: 10.1007/s00205-006-0030-8. |
show all references
References:
[1] |
V. I. Arnol'd, Characteristic class entering in quantization conditions,, Funct. Anal. Appl., 1 (1967), 1.
doi: 10.1007/BF01075861. |
[2] |
V. I. Arnol'd, "Dynamical Systems III,", Encyclopaedia Math. Sci., 3 (1988).
|
[3] |
V. I. Arnol'd, Sturm theorems and symplectic geometry,, Funct. Anal. Appl., 19 (1985), 251.
|
[4] |
E. Barrabés, J. M. Cors, C. Pinyol and J. Soler, Hip-hop solutions of the 2N-body problem,, Celest. Mech. Dynam. Astron., 95 (2006), 55.
doi: 10.1007/s10569-006-9016-y. |
[5] |
P. L. Buono, M. Kovacic, M. Lewis and D. Offin, Symmetry-breaking bifurcations of the hip-hop orbit,, in preparation., (). Google Scholar |
[6] |
A. Chenciner and R. Montgomery, On a remarkable periodic orbit of the three body problem in the case of equal masses,, Ann. Math., 152 (2000), 881.
doi: 10.2307/2661357. |
[7] |
A. Chenciner and A. Venturelli, Minima de l'intégrale d'action du problème Newtonien de 4 corps de masses égales dans $\mathbbR^3$: orbites 'hip-hop',, Celest. Mech. Dynam. Astron., 77 (2000), 139.
doi: 10.1023/A:1008381001328. |
[8] |
G. F. Dell'Antonio, Variational calculus and stability of periodic solutions of a class of Hamiltonian systems,, Reviews in Math. Physics, 6 (1994), 1187.
doi: 10.1142/S0129055X94000432. |
[9] |
J. J. Duistermaat, On the morse index in variational calculus,, Adv. Math., 21 (1976), 173.
doi: 10.1016/0001-8708(76)90074-8. |
[10] |
I. Ekeland, "Convexity Methods in Hamiltonian Systems,", Springer-Verlag, (1991). Google Scholar |
[11] |
D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem,, Inv. Math., 155 (2004), 305.
doi: 10.1007/s00222-003-0322-7. |
[12] |
W. B. Gordon, A minimizing property of Keplerian orbits,, Amer. J. Math., 99 (1970), 961.
doi: 10.2307/2373993. |
[13] |
X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit,, Comm. Math. Phys., 290 (2009), 737.
doi: 10.1007/s00220-009-0860-y. |
[14] |
J. Marsden, "Lectures on Mechanics,", Springer-Verlag, (1991). Google Scholar |
[15] |
C. Marchal, How the method of minimization of action avoids singularities,, Celest. Mech. Dynam. Astron., 83 (2002), 325.
doi: 10.1023/A:1020128408706. |
[16] |
V. P. Maslov, "Theory of Perturbations and Asymptotic Methods,", (Russian), (1965). Google Scholar |
[17] |
K. R. Meyer, Hamiltonian systems with a discrete symmetry,, J. Diff. Eqns., 41 (1981), 228.
doi: 10.1016/0022-0396(81)90059-0. |
[18] |
K. R. Meyer and D. S. Schmidt, Librations of central configurations and braided Saturn rings,, Celest. Mech. Dynam. Astron., 55 (1993), 289.
doi: 10.1007/BF00692516. |
[19] |
D. C. Offin, Hyperbolic minimizing geodesics,, Trans. Amer. Math. Soc., 352 (2000), 3323.
doi: 10.1090/S0002-9947-00-02483-1. |
[20] |
D. C. Offin and H. Cabral, Hyperbolicity for symmetric periodic orbits in the isosceles three body problem,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 379.
doi: 10.3934/dcdss.2009.2.379. |
[21] |
G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem,, Ergod. Th. & Dynam. Sys., 27 (2007), 1947.
|
[22] |
C. Simó, Dynamical properties of the figure eight solution of the three body problem,, Contemp. Math., 292 (2002), 209.
doi: 10.1090/conm/292/04926. |
[23] |
S. Terracini and A. Venturelli, Symmetric trajectories for the 2N-body problem with equal masses,, Arch. Rational. Mech. Anal., 184 (2007), 465.
doi: 10.1007/s00205-006-0030-8. |
[1] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[2] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[3] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[4] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[5] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[6] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[7] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[8] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[9] |
Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020050 |
[10] |
Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094 |
[11] |
Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020362 |
[12] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
[13] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[14] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[15] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[16] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[17] |
Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020106 |
[18] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[19] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[20] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]