March  2013, 33(3): 1137-1155. doi: 10.3934/dcds.2013.33.1137

Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses

1. 

Department of Mathematics, Queen's University, Kingston, Ontario K7L 4V1, Canada

2. 

Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4, Canada, Canada

Received  April 2011 Revised  March 2012 Published  October 2012

The hip-hop orbit is an interesting symmetric periodic family of orbits whereby the global existence methods of variational analysis applied to the N-body problem result in a collision free solution of (1). Perturbation techniques have been applied to study families of hip-hop like orbits bifurcating from a uniformly rotating planar 2N-gon [4] with equal masses, or a uniformly rotating planar 2N+1 body relative equilibrium with a large central mass [18]. We study the question of stability or instability for symmetric periodic solutions of the equal mass $2N$-body problem without perturbation methods. The hip-hop family is a family of $\mathbb{Z}_2$-symmetric action minimizing solutions, investigated by [7,23], and is shown to be generically hyperbolic on its reduced energy-momentum surface. We employ techniques from symplectic geometry and specifically a variant of the Maslov index for curves of Lagrangian subspaces along the minimizing hip-hop orbit to develop conditions which preclude the existence of eigenvalues of the monodromy matrix on the unit circle.
Citation: Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137
References:
[1]

V. I. Arnol'd, Characteristic class entering in quantization conditions,, Funct. Anal. Appl., 1 (1967), 1.  doi: 10.1007/BF01075861.  Google Scholar

[2]

V. I. Arnol'd, "Dynamical Systems III,", Encyclopaedia Math. Sci., 3 (1988).   Google Scholar

[3]

V. I. Arnol'd, Sturm theorems and symplectic geometry,, Funct. Anal. Appl., 19 (1985), 251.   Google Scholar

[4]

E. Barrabés, J. M. Cors, C. Pinyol and J. Soler, Hip-hop solutions of the 2N-body problem,, Celest. Mech. Dynam. Astron., 95 (2006), 55.  doi: 10.1007/s10569-006-9016-y.  Google Scholar

[5]

P. L. Buono, M. Kovacic, M. Lewis and D. Offin, Symmetry-breaking bifurcations of the hip-hop orbit,, in preparation., ().   Google Scholar

[6]

A. Chenciner and R. Montgomery, On a remarkable periodic orbit of the three body problem in the case of equal masses,, Ann. Math., 152 (2000), 881.  doi: 10.2307/2661357.  Google Scholar

[7]

A. Chenciner and A. Venturelli, Minima de l'intégrale d'action du problème Newtonien de 4 corps de masses égales dans $\mathbbR^3$: orbites 'hip-hop',, Celest. Mech. Dynam. Astron., 77 (2000), 139.  doi: 10.1023/A:1008381001328.  Google Scholar

[8]

G. F. Dell'Antonio, Variational calculus and stability of periodic solutions of a class of Hamiltonian systems,, Reviews in Math. Physics, 6 (1994), 1187.  doi: 10.1142/S0129055X94000432.  Google Scholar

[9]

J. J. Duistermaat, On the morse index in variational calculus,, Adv. Math., 21 (1976), 173.  doi: 10.1016/0001-8708(76)90074-8.  Google Scholar

[10]

I. Ekeland, "Convexity Methods in Hamiltonian Systems,", Springer-Verlag, (1991).   Google Scholar

[11]

D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem,, Inv. Math., 155 (2004), 305.  doi: 10.1007/s00222-003-0322-7.  Google Scholar

[12]

W. B. Gordon, A minimizing property of Keplerian orbits,, Amer. J. Math., 99 (1970), 961.  doi: 10.2307/2373993.  Google Scholar

[13]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit,, Comm. Math. Phys., 290 (2009), 737.  doi: 10.1007/s00220-009-0860-y.  Google Scholar

[14]

J. Marsden, "Lectures on Mechanics,", Springer-Verlag, (1991).   Google Scholar

[15]

C. Marchal, How the method of minimization of action avoids singularities,, Celest. Mech. Dynam. Astron., 83 (2002), 325.  doi: 10.1023/A:1020128408706.  Google Scholar

[16]

V. P. Maslov, "Theory of Perturbations and Asymptotic Methods,", (Russian), (1965).   Google Scholar

[17]

K. R. Meyer, Hamiltonian systems with a discrete symmetry,, J. Diff. Eqns., 41 (1981), 228.  doi: 10.1016/0022-0396(81)90059-0.  Google Scholar

[18]

K. R. Meyer and D. S. Schmidt, Librations of central configurations and braided Saturn rings,, Celest. Mech. Dynam. Astron., 55 (1993), 289.  doi: 10.1007/BF00692516.  Google Scholar

[19]

D. C. Offin, Hyperbolic minimizing geodesics,, Trans. Amer. Math. Soc., 352 (2000), 3323.  doi: 10.1090/S0002-9947-00-02483-1.  Google Scholar

[20]

D. C. Offin and H. Cabral, Hyperbolicity for symmetric periodic orbits in the isosceles three body problem,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 379.  doi: 10.3934/dcdss.2009.2.379.  Google Scholar

[21]

G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem,, Ergod. Th. & Dynam. Sys., 27 (2007), 1947.   Google Scholar

[22]

C. Simó, Dynamical properties of the figure eight solution of the three body problem,, Contemp. Math., 292 (2002), 209.  doi: 10.1090/conm/292/04926.  Google Scholar

[23]

S. Terracini and A. Venturelli, Symmetric trajectories for the 2N-body problem with equal masses,, Arch. Rational. Mech. Anal., 184 (2007), 465.  doi: 10.1007/s00205-006-0030-8.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Characteristic class entering in quantization conditions,, Funct. Anal. Appl., 1 (1967), 1.  doi: 10.1007/BF01075861.  Google Scholar

[2]

V. I. Arnol'd, "Dynamical Systems III,", Encyclopaedia Math. Sci., 3 (1988).   Google Scholar

[3]

V. I. Arnol'd, Sturm theorems and symplectic geometry,, Funct. Anal. Appl., 19 (1985), 251.   Google Scholar

[4]

E. Barrabés, J. M. Cors, C. Pinyol and J. Soler, Hip-hop solutions of the 2N-body problem,, Celest. Mech. Dynam. Astron., 95 (2006), 55.  doi: 10.1007/s10569-006-9016-y.  Google Scholar

[5]

P. L. Buono, M. Kovacic, M. Lewis and D. Offin, Symmetry-breaking bifurcations of the hip-hop orbit,, in preparation., ().   Google Scholar

[6]

A. Chenciner and R. Montgomery, On a remarkable periodic orbit of the three body problem in the case of equal masses,, Ann. Math., 152 (2000), 881.  doi: 10.2307/2661357.  Google Scholar

[7]

A. Chenciner and A. Venturelli, Minima de l'intégrale d'action du problème Newtonien de 4 corps de masses égales dans $\mathbbR^3$: orbites 'hip-hop',, Celest. Mech. Dynam. Astron., 77 (2000), 139.  doi: 10.1023/A:1008381001328.  Google Scholar

[8]

G. F. Dell'Antonio, Variational calculus and stability of periodic solutions of a class of Hamiltonian systems,, Reviews in Math. Physics, 6 (1994), 1187.  doi: 10.1142/S0129055X94000432.  Google Scholar

[9]

J. J. Duistermaat, On the morse index in variational calculus,, Adv. Math., 21 (1976), 173.  doi: 10.1016/0001-8708(76)90074-8.  Google Scholar

[10]

I. Ekeland, "Convexity Methods in Hamiltonian Systems,", Springer-Verlag, (1991).   Google Scholar

[11]

D. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical $n$-body problem,, Inv. Math., 155 (2004), 305.  doi: 10.1007/s00222-003-0322-7.  Google Scholar

[12]

W. B. Gordon, A minimizing property of Keplerian orbits,, Amer. J. Math., 99 (1970), 961.  doi: 10.2307/2373993.  Google Scholar

[13]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit,, Comm. Math. Phys., 290 (2009), 737.  doi: 10.1007/s00220-009-0860-y.  Google Scholar

[14]

J. Marsden, "Lectures on Mechanics,", Springer-Verlag, (1991).   Google Scholar

[15]

C. Marchal, How the method of minimization of action avoids singularities,, Celest. Mech. Dynam. Astron., 83 (2002), 325.  doi: 10.1023/A:1020128408706.  Google Scholar

[16]

V. P. Maslov, "Theory of Perturbations and Asymptotic Methods,", (Russian), (1965).   Google Scholar

[17]

K. R. Meyer, Hamiltonian systems with a discrete symmetry,, J. Diff. Eqns., 41 (1981), 228.  doi: 10.1016/0022-0396(81)90059-0.  Google Scholar

[18]

K. R. Meyer and D. S. Schmidt, Librations of central configurations and braided Saturn rings,, Celest. Mech. Dynam. Astron., 55 (1993), 289.  doi: 10.1007/BF00692516.  Google Scholar

[19]

D. C. Offin, Hyperbolic minimizing geodesics,, Trans. Amer. Math. Soc., 352 (2000), 3323.  doi: 10.1090/S0002-9947-00-02483-1.  Google Scholar

[20]

D. C. Offin and H. Cabral, Hyperbolicity for symmetric periodic orbits in the isosceles three body problem,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 379.  doi: 10.3934/dcdss.2009.2.379.  Google Scholar

[21]

G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem,, Ergod. Th. & Dynam. Sys., 27 (2007), 1947.   Google Scholar

[22]

C. Simó, Dynamical properties of the figure eight solution of the three body problem,, Contemp. Math., 292 (2002), 209.  doi: 10.1090/conm/292/04926.  Google Scholar

[23]

S. Terracini and A. Venturelli, Symmetric trajectories for the 2N-body problem with equal masses,, Arch. Rational. Mech. Anal., 184 (2007), 465.  doi: 10.1007/s00205-006-0030-8.  Google Scholar

[1]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[2]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[3]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[4]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[7]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[8]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[9]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[10]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[11]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[12]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[13]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[14]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[15]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[18]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (244)
  • HTML views (0)
  • Cited by (3)

[Back to Top]