March  2013, 33(3): 1157-1175. doi: 10.3934/dcds.2013.33.1157

On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona

2. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona

Received  May 2011 Revised  November 2011 Published  October 2012

The problem of three bodies with equal masses in $\mathbb{S}^2$ is known to have Lagrangian homographic orbits. We study the linear stability and also a "practical'' (or effective) stability of these orbits on the unit sphere.
Citation: Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157
References:
[1]

C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, Users' guide to PARI/GP,, (freely available from \url{http://pari.math.u-bordeaux.fr/})., ().   Google Scholar

[2]

F. Diacu and E. Pérez-Chavela, Homographic solutions of the curved 3-body problem,, Journal of Differential Equations, 250 (2011), 340.  doi: 10.1016/j.jde.2010.08.011.  Google Scholar

[3]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem,, Journal of Differential Equations, 77 (1989), 167.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[4]

T. Kapela and C. Simó, Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems,, Preprint, ().   Google Scholar

[5]

R. Martínez, A. Samà and C. Simó, "Stability of Homographic Solutions of the Planar Three-Body Problem with Homogeneous Potentials,", Proceedings EQUADIFF (2003), (2003).   Google Scholar

[6]

R. Martínez, A. Samà and C. Simó, Stability diagram for 4D linear periodic systems with applications to homographic solutions,, Journal of Differential Equations, 226 (2006), 619.  doi: 10.1016/j.jde.2006.01.014.  Google Scholar

[7]

R. Martínez, A. Samà and C. Simó, Analysis of the stability of a family of singular-limit linear periodic systems in $R^4.$ applications,, Journal of Differential Equations, 226 (2006), 652.  doi: 10.1016/j.jde.2005.09.012.  Google Scholar

[8]

C. Siegel and J. Moser, "Lectures on Celestial Mechanics,", Springer, (1971).   Google Scholar

[9]

C. Simó, On the analytical and numerical approximation of invariant manifolds,, Modern methods in celestial mechanics, (1990), 285.   Google Scholar

[10]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,", Cambridge Univ. Press, (1970).   Google Scholar

show all references

References:
[1]

C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, Users' guide to PARI/GP,, (freely available from \url{http://pari.math.u-bordeaux.fr/})., ().   Google Scholar

[2]

F. Diacu and E. Pérez-Chavela, Homographic solutions of the curved 3-body problem,, Journal of Differential Equations, 250 (2011), 340.  doi: 10.1016/j.jde.2010.08.011.  Google Scholar

[3]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem,, Journal of Differential Equations, 77 (1989), 167.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[4]

T. Kapela and C. Simó, Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems,, Preprint, ().   Google Scholar

[5]

R. Martínez, A. Samà and C. Simó, "Stability of Homographic Solutions of the Planar Three-Body Problem with Homogeneous Potentials,", Proceedings EQUADIFF (2003), (2003).   Google Scholar

[6]

R. Martínez, A. Samà and C. Simó, Stability diagram for 4D linear periodic systems with applications to homographic solutions,, Journal of Differential Equations, 226 (2006), 619.  doi: 10.1016/j.jde.2006.01.014.  Google Scholar

[7]

R. Martínez, A. Samà and C. Simó, Analysis of the stability of a family of singular-limit linear periodic systems in $R^4.$ applications,, Journal of Differential Equations, 226 (2006), 652.  doi: 10.1016/j.jde.2005.09.012.  Google Scholar

[8]

C. Siegel and J. Moser, "Lectures on Celestial Mechanics,", Springer, (1971).   Google Scholar

[9]

C. Simó, On the analytical and numerical approximation of invariant manifolds,, Modern methods in celestial mechanics, (1990), 285.   Google Scholar

[10]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,", Cambridge Univ. Press, (1970).   Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[5]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[9]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]