March  2013, 33(3): 1177-1199. doi: 10.3934/dcds.2013.33.1177

Reversibility and branching of periodic orbits

1. 

Departamento de Física, Química e Matemática, Universidade Federal de São Carlos, 18052-780, S.P., Brazil

2. 

Departamento de Matemática, Universidade Estadual de Campinas, Caixa Postal 6065, 13083-970, Campinas, S.P., Brazil

Received  April 2011 Revised  April 2012 Published  October 2012

We study the dynamics near an equilibrium point of a $2$-parameter family of a reversible system in $\mathbb{R}^6$. In particular, we exhibit conditions for the existence of periodic orbits near the equilibrium of systems having the form $x^{(vi)}+ \lambda_1 x^{(iv)} + \lambda_2 x'' +x = f(x,x',x'',x''',x^{(iv)},x^{(v)})$. The techniques used are Belitskii normal form combined with Lyapunov-Schmidt reduction.
Citation: Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177
References:
[1]

A. R. Champneys, Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics,, Physica D, 112 (1998), 158.  doi: 10.1016/S0167-2789(97)00209-1.  Google Scholar

[2]

J. V. Chaparova, L. A. Peletier and S. A. Tersian, Existence and nonexistence of nontrivial solutions of semilinear fourth- and sixth-order differential equations,, Advances in Differential Equations, 8 (2003), 1237.   Google Scholar

[3]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Am. Math. Soc., 218 (1976), 89.  doi: 10.1090/S0002-9947-1976-0402815-3.  Google Scholar

[4]

J. Hale, "Ordinary Differential Equations,", $1^{st}$ edition, (1969).   Google Scholar

[5]

G. Iooss and M. Adelmeyer, "Topics in Bifurcation Theory and Applications,", Adv. Ser. Nonlinear Dynamics, 3 (1992).   Google Scholar

[6]

A. Jacquemard, M. F. S. Lima and M. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica ed Applicata, 187 (1992), 105.   Google Scholar

[7]

J. S. W. Lamb and J. A. G. Roberts, Time-reversal symmetry in dynamical systems: a survey,, Phys. D, 112 (1998), 1.   Google Scholar

[8]

M. F. S. Lima and M. Teixeira, Families of periodic orbits in resonant reversible systems,, Bull. Braz. Math. Soc., 40 (2009), 521.  doi: 10.1007/s00574-009-0025-9.  Google Scholar

[9]

C. W. Shih, Bifurcations of Symmetric Periodic Orbits near Equilibrium in Reversible Systems,, Int. J. Bifurcation and Chaos, 7 (1997), 569.  doi: 10.1142/S0218127497000406.  Google Scholar

[10]

T. Wagenknecht, "An analytical Study of a Two Degrees of Freedom Hamiltonian System Associated the Reversible Hyperbolic Umbilic,", Ph. D thesis, (1999).   Google Scholar

show all references

References:
[1]

A. R. Champneys, Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics,, Physica D, 112 (1998), 158.  doi: 10.1016/S0167-2789(97)00209-1.  Google Scholar

[2]

J. V. Chaparova, L. A. Peletier and S. A. Tersian, Existence and nonexistence of nontrivial solutions of semilinear fourth- and sixth-order differential equations,, Advances in Differential Equations, 8 (2003), 1237.   Google Scholar

[3]

R. L. Devaney, Reversible diffeomorphisms and flows,, Trans. Am. Math. Soc., 218 (1976), 89.  doi: 10.1090/S0002-9947-1976-0402815-3.  Google Scholar

[4]

J. Hale, "Ordinary Differential Equations,", $1^{st}$ edition, (1969).   Google Scholar

[5]

G. Iooss and M. Adelmeyer, "Topics in Bifurcation Theory and Applications,", Adv. Ser. Nonlinear Dynamics, 3 (1992).   Google Scholar

[6]

A. Jacquemard, M. F. S. Lima and M. Teixeira, Degenerate resonances and branching of periodic orbits,, Annali di Matematica ed Applicata, 187 (1992), 105.   Google Scholar

[7]

J. S. W. Lamb and J. A. G. Roberts, Time-reversal symmetry in dynamical systems: a survey,, Phys. D, 112 (1998), 1.   Google Scholar

[8]

M. F. S. Lima and M. Teixeira, Families of periodic orbits in resonant reversible systems,, Bull. Braz. Math. Soc., 40 (2009), 521.  doi: 10.1007/s00574-009-0025-9.  Google Scholar

[9]

C. W. Shih, Bifurcations of Symmetric Periodic Orbits near Equilibrium in Reversible Systems,, Int. J. Bifurcation and Chaos, 7 (1997), 569.  doi: 10.1142/S0218127497000406.  Google Scholar

[10]

T. Wagenknecht, "An analytical Study of a Two Degrees of Freedom Hamiltonian System Associated the Reversible Hyperbolic Umbilic,", Ph. D thesis, (1999).   Google Scholar

[1]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[2]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[3]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[4]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[5]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[6]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[7]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[8]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[9]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[10]

Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020177

[11]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[12]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[13]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[14]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[15]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[16]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[17]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[18]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[19]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[20]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]