March  2013, 33(3): 1201-1214. doi: 10.3934/dcds.2013.33.1201

Normally stable hamiltonian systems

1. 

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, United States

2. 

Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain, Spain

Received  May 2011 Revised  November 2011 Published  October 2012

We study the stability of an equilibrium point of a Hamiltonian system with $n$ degrees of freedom. A new concept of stability called normal stability is given which applies to a system in normal form and relies on the existence of a formal integral whose quadratic part is positive definite. We give a necessary and sufficient condition for normal stability. This condition depends only on the quadratic terms of the Hamiltonian. We relate normal stability with formal stability and Liapunov stability. An application to the stability of the $L_4$ and $L_5$ equilibrium points of the spatial circular restricted three body problem is given.
Citation: Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201
References:
[1]

G. Benettin, F. Fassò and M. Guzzo, Nekhoroshev-stability of $L_4$ and $L_5$ in the spatial restricted three-body problem,, Regul. Chaotic Dyn., 3 (1998), 56.   Google Scholar

[2]

A. D. Bryuno, Formal stability of Hamiltonian systems,, Mat. Zametki, 1 (1967), 325.   Google Scholar

[3]

H. E. Cabral and K. R. Meyer, Stability of equilibria and fixed points of conservative systems,, Nonlinearity, 12 (1999), 1351.  doi: 10.1088/0951-7715/12/5/309.  Google Scholar

[4]

T. M. Cherry, On periodic solutions of Hamiltonian systems of differential equations,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 227 (1928), 137.  doi: 10.1098/rsta.1928.0005.  Google Scholar

[5]

N. G. Chetaev, Un théorème sur l'instabilité,, Dokl. Akad. Nauk SSSR, 1 (1934), 529.   Google Scholar

[6]

G. L. Dirichlet, Über die stabilität des Gleichgewichts,, J. Reine Angew. Math., 32 (1846), 85.  doi: 10.1515/crll.1846.32.85.  Google Scholar

[7]

F. Fassò and D. Lewis, Stability properties of the Riemann ellipsoids,, Arch. Ration. Mech. Anal., 158 (2001), 259.  doi: 10.1007/PL00004245.  Google Scholar

[8]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem,, J. Differential Equations, 77 (1989), 167.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[9]

J. Glimm, Formal stability of Hamiltonian systems,, Comm. Pure Appl. Math., 16 (1963), 509.   Google Scholar

[10]

L. G. Khazin, On the stability of Hamiltonian systems in the presence of resonances,, Prikl. Mat. Mekh., 35 (1971), 423.   Google Scholar

[11]

A. L. Kunitsyn and A. A. Tuyakbayev, The stability of Hamiltonian systems in the case of a multiple fourth-order resonance,, Prikl. Mat. Mekh., 56 (1992), 672.   Google Scholar

[12]

A. Liapounoff, Problème général de la stabilité du mouvement,, Ann. Fac. Sci. Toulouse, 9 (1907), 203.   Google Scholar

[13]

K. R. Meyer, Normal forms for Hamiltonian systems,, Celestial Mech., 9 (1974), 517.   Google Scholar

[14]

K. R. Meyer, G. R. Hall and D. Offin, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem,", $2^{nd}$ edition, (2009).   Google Scholar

[15]

J. Moser, Stabilitätsverhalten kanonischer Differential gleichungs systeme,, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. IIa, 6 (1955), 87.   Google Scholar

[16]

J. Moser, New aspects in the theory of stability of Hamiltonian systems,, Comm. Pure Appl. Math., 11 (1958), 81.  doi: 10.1002/cpa.3160110105.  Google Scholar

[17]

J. Moser, On the elimination of the irrationality condition and Birkhoff's concept of complete stability,, Bol. Soc. Mat. Mexicana (2), 5 (1960), 167.   Google Scholar

[18]

J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein,, Comm. Pure Appl. Math., 29 (1976), 727.  doi: 10.1002/cpa.3160290613.  Google Scholar

[19]

F. dos Santos, J. E. Mansilla and C. Vidal, Stability of equilibrium solutions of autonomous and periodic Hamiltonian systems with $n$-degrees of freedom in the case of single resonance,, J. Dynam. Differential Equations, 22 (2010), 805.  doi: 10.1007/s10884-010-9176-z.  Google Scholar

[20]

C. L. Siegel, Über die Existenz einer Normalform analytischer Hamiltonscher Differential gleichungen in der Nähe einer Gleichgewichtslösung,, Math. Ann., 128 (1954), 144.  doi: 10.1007/BF01360131.  Google Scholar

[21]

V. G. Szebehely, "Theory of Orbits: The Restricted Problem of Three Bodies,", Academic Press, (1967).   Google Scholar

[22]

C. Vidal, Stability of equilibrium positions of Hamiltonian systems,, Qual. Theory Dyn. Syst., 7 (2008), 253.   Google Scholar

[23]

A. Weinstein, Normal modes for nonlinear Hamiltonian systems,, Invent. Math., 20 (1973), 47.  doi: 10.1007/BF01405263.  Google Scholar

[24]

A. Weinstein, Symplectic $V$-manifolds, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds,, Comm. Pure Appl. Math., 30 (1977), 265.  doi: 10.1002/cpa.3160300207.  Google Scholar

[25]

A. Weinstein, Bifurcations and Hamilton's principle,, Math. Z., 159 (1978), 235.  doi: 10.1007/BF01214573.  Google Scholar

[26]

V. A. Yakubovich and V. M. Starzhinskii, "Linear Differential Equations with Periodic Coefficients,", Vol. 1 and 2, (1975).   Google Scholar

show all references

References:
[1]

G. Benettin, F. Fassò and M. Guzzo, Nekhoroshev-stability of $L_4$ and $L_5$ in the spatial restricted three-body problem,, Regul. Chaotic Dyn., 3 (1998), 56.   Google Scholar

[2]

A. D. Bryuno, Formal stability of Hamiltonian systems,, Mat. Zametki, 1 (1967), 325.   Google Scholar

[3]

H. E. Cabral and K. R. Meyer, Stability of equilibria and fixed points of conservative systems,, Nonlinearity, 12 (1999), 1351.  doi: 10.1088/0951-7715/12/5/309.  Google Scholar

[4]

T. M. Cherry, On periodic solutions of Hamiltonian systems of differential equations,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 227 (1928), 137.  doi: 10.1098/rsta.1928.0005.  Google Scholar

[5]

N. G. Chetaev, Un théorème sur l'instabilité,, Dokl. Akad. Nauk SSSR, 1 (1934), 529.   Google Scholar

[6]

G. L. Dirichlet, Über die stabilität des Gleichgewichts,, J. Reine Angew. Math., 32 (1846), 85.  doi: 10.1515/crll.1846.32.85.  Google Scholar

[7]

F. Fassò and D. Lewis, Stability properties of the Riemann ellipsoids,, Arch. Ration. Mech. Anal., 158 (2001), 259.  doi: 10.1007/PL00004245.  Google Scholar

[8]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem,, J. Differential Equations, 77 (1989), 167.  doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[9]

J. Glimm, Formal stability of Hamiltonian systems,, Comm. Pure Appl. Math., 16 (1963), 509.   Google Scholar

[10]

L. G. Khazin, On the stability of Hamiltonian systems in the presence of resonances,, Prikl. Mat. Mekh., 35 (1971), 423.   Google Scholar

[11]

A. L. Kunitsyn and A. A. Tuyakbayev, The stability of Hamiltonian systems in the case of a multiple fourth-order resonance,, Prikl. Mat. Mekh., 56 (1992), 672.   Google Scholar

[12]

A. Liapounoff, Problème général de la stabilité du mouvement,, Ann. Fac. Sci. Toulouse, 9 (1907), 203.   Google Scholar

[13]

K. R. Meyer, Normal forms for Hamiltonian systems,, Celestial Mech., 9 (1974), 517.   Google Scholar

[14]

K. R. Meyer, G. R. Hall and D. Offin, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem,", $2^{nd}$ edition, (2009).   Google Scholar

[15]

J. Moser, Stabilitätsverhalten kanonischer Differential gleichungs systeme,, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. IIa, 6 (1955), 87.   Google Scholar

[16]

J. Moser, New aspects in the theory of stability of Hamiltonian systems,, Comm. Pure Appl. Math., 11 (1958), 81.  doi: 10.1002/cpa.3160110105.  Google Scholar

[17]

J. Moser, On the elimination of the irrationality condition and Birkhoff's concept of complete stability,, Bol. Soc. Mat. Mexicana (2), 5 (1960), 167.   Google Scholar

[18]

J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein,, Comm. Pure Appl. Math., 29 (1976), 727.  doi: 10.1002/cpa.3160290613.  Google Scholar

[19]

F. dos Santos, J. E. Mansilla and C. Vidal, Stability of equilibrium solutions of autonomous and periodic Hamiltonian systems with $n$-degrees of freedom in the case of single resonance,, J. Dynam. Differential Equations, 22 (2010), 805.  doi: 10.1007/s10884-010-9176-z.  Google Scholar

[20]

C. L. Siegel, Über die Existenz einer Normalform analytischer Hamiltonscher Differential gleichungen in der Nähe einer Gleichgewichtslösung,, Math. Ann., 128 (1954), 144.  doi: 10.1007/BF01360131.  Google Scholar

[21]

V. G. Szebehely, "Theory of Orbits: The Restricted Problem of Three Bodies,", Academic Press, (1967).   Google Scholar

[22]

C. Vidal, Stability of equilibrium positions of Hamiltonian systems,, Qual. Theory Dyn. Syst., 7 (2008), 253.   Google Scholar

[23]

A. Weinstein, Normal modes for nonlinear Hamiltonian systems,, Invent. Math., 20 (1973), 47.  doi: 10.1007/BF01405263.  Google Scholar

[24]

A. Weinstein, Symplectic $V$-manifolds, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds,, Comm. Pure Appl. Math., 30 (1977), 265.  doi: 10.1002/cpa.3160300207.  Google Scholar

[25]

A. Weinstein, Bifurcations and Hamilton's principle,, Math. Z., 159 (1978), 235.  doi: 10.1007/BF01214573.  Google Scholar

[26]

V. A. Yakubovich and V. M. Starzhinskii, "Linear Differential Equations with Periodic Coefficients,", Vol. 1 and 2, (1975).   Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[5]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[8]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[17]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (3)

[Back to Top]