# American Institute of Mathematical Sciences

March  2013, 33(3): 1215-1230. doi: 10.3934/dcds.2013.33.1215

## Computing collinear 4-Body Problem central configurations with given masses

 1 Professor "Eugenio Méndez Docurro 2011", de la Escuela Superior de Física y Matemáticas del IPN, Zacatenco, 07738 México, D F, Mexico

Received  April 2011 Revised  December 2011 Published  October 2012

An interesting description of a collinear configuration of four particles is found in terms of two spherical coordinates. An algorithm to compute the four coordinates of particles of a collinear Four-Body central configuration is presented by using an orthocentric tetrahedron, which edge lengths are function of given masses. Each mass is placed at the corresponding vertex of the tetrahedron. The center of mass (and orthocenter) of the tetrahedron is at the origin of coordinates. The initial position of the tetrahedron is placed with two pairs of vertices each in a coordinate plan, the lines joining any pair of them parallel to a coordinate axis, the center of masses of each and the center of mass of the four on one coordinate axis. From this original position the tetrahedron is rotated by two angles around the center of mass until the direction of configuration coincides with one axis of coordinates. The four coordinates of the vertices of the tetrahedron along this direction determine the central configuration by finding the two angles corresponding to it. The twelve possible configurations predicted by Moulton's theorem are computed for a particular mass choice.
Citation: Eduardo Piña. Computing collinear 4-Body Problem central configurations with given masses. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1215-1230. doi: 10.3934/dcds.2013.33.1215
##### References:
 [1] D. G. Saari, "Collisions, Rings, and Other Newtonian N-Body Problems," American Mathematical Society, Providence, Rhode Island, 2005. [2] F. R. Moulton, The straight line solutions of the problem of N-bodies, Annals of Mathematics, 12 (1910), 1-17. doi: 10.2307/2007159. [3] R. Lehmann-Filhés, Ueber swei Fälle des Vielkörpersproblems, Astr. Nachr, 127 (1891), 137-144. [4] E. Piña, Algorithm for planar Four-Body Problem central configurations with given masses, preprint, arXiv:1006.2430 [5] E. Piña, New coordinates for the four-body problem, Rev. Mex. Fis., 56 (2010), 195-203. [6] E. Piña and P. Lonngi, Central configurations for the planar Newtonian four-body problem, Cel. Mech. & Dyn. Astr., 108 (2010), 73-93. doi: 10.1007/s10569-010-9291-5. [7] L. Landau and E. Lifshitz, "Mechanics," Pergamon Press, Reading, 1960. [8] J. L. Lagrange, Solutions analytiques de quelques problèmes sur les piramides triangulaires, Nouv. Mem. Acad. Sci. Berlin, (1773), 149-176. [9] N. A. Court, Notes on the orthocentric tetrahedra, The American Mathematical Monthly, 41 (1934), 499-523. doi: 10.2307/2300415. [10] E. Piña and A. Bengochea, Hyperbolic geometry for the binary collision angles of the three-body problem in the plane, Qualitative Theor. of Dyn. Sys., 8 (2009), 399-417 doi: 10.1007/s12346-010-0009-6. [11] C. Simó, El conjunto de bifurcación en el problema espacial de tres cuerpos, in "Acta I Asamblea Nacional de Astronomía y Astrofísica," Instituto de Astrofísica. Univ. de la Laguna. Spain, (1975), 211-217. [12] J. V. Jose and E. J. Saletan, "Classical Mechanics, A Contemporary Approach," Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9780511803772. [13] A. Bengochea and E. Piña, The dynamics of saturn, janus and epimetheus as a three-body problem in the plane, Rev. Mex. Fis., 55 (2009), 97-105. [14] E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies," $4^{th}$ edition, Cambridge University Press, Cambridge, 1937. [15] E. Piña, Rotations with Rodrigues' vector, Eur. J. Phys., 32 (2011), 1171-1178. doi: 10.1088/0143-0807/32/5/005. [16] K. R. Meyer, G. R. Hall and D. Offin, "Introduction to Hamiltonian Dynamical Systems and the N-Body Problem," $2^{nd}$ edition, Springer-Verlag, New York, 2009.

show all references

##### References:
 [1] D. G. Saari, "Collisions, Rings, and Other Newtonian N-Body Problems," American Mathematical Society, Providence, Rhode Island, 2005. [2] F. R. Moulton, The straight line solutions of the problem of N-bodies, Annals of Mathematics, 12 (1910), 1-17. doi: 10.2307/2007159. [3] R. Lehmann-Filhés, Ueber swei Fälle des Vielkörpersproblems, Astr. Nachr, 127 (1891), 137-144. [4] E. Piña, Algorithm for planar Four-Body Problem central configurations with given masses, preprint, arXiv:1006.2430 [5] E. Piña, New coordinates for the four-body problem, Rev. Mex. Fis., 56 (2010), 195-203. [6] E. Piña and P. Lonngi, Central configurations for the planar Newtonian four-body problem, Cel. Mech. & Dyn. Astr., 108 (2010), 73-93. doi: 10.1007/s10569-010-9291-5. [7] L. Landau and E. Lifshitz, "Mechanics," Pergamon Press, Reading, 1960. [8] J. L. Lagrange, Solutions analytiques de quelques problèmes sur les piramides triangulaires, Nouv. Mem. Acad. Sci. Berlin, (1773), 149-176. [9] N. A. Court, Notes on the orthocentric tetrahedra, The American Mathematical Monthly, 41 (1934), 499-523. doi: 10.2307/2300415. [10] E. Piña and A. Bengochea, Hyperbolic geometry for the binary collision angles of the three-body problem in the plane, Qualitative Theor. of Dyn. Sys., 8 (2009), 399-417 doi: 10.1007/s12346-010-0009-6. [11] C. Simó, El conjunto de bifurcación en el problema espacial de tres cuerpos, in "Acta I Asamblea Nacional de Astronomía y Astrofísica," Instituto de Astrofísica. Univ. de la Laguna. Spain, (1975), 211-217. [12] J. V. Jose and E. J. Saletan, "Classical Mechanics, A Contemporary Approach," Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9780511803772. [13] A. Bengochea and E. Piña, The dynamics of saturn, janus and epimetheus as a three-body problem in the plane, Rev. Mex. Fis., 55 (2009), 97-105. [14] E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies," $4^{th}$ edition, Cambridge University Press, Cambridge, 1937. [15] E. Piña, Rotations with Rodrigues' vector, Eur. J. Phys., 32 (2011), 1171-1178. doi: 10.1088/0143-0807/32/5/005. [16] K. R. Meyer, G. R. Hall and D. Offin, "Introduction to Hamiltonian Dynamical Systems and the N-Body Problem," $2^{nd}$ edition, Springer-Verlag, New York, 2009.
 [1] Hsin-Yuan Huang. Schubart-like orbits in the Newtonian collinear four-body problem: A variational proof. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1763-1774. doi: 10.3934/dcds.2012.32.1763 [2] Tiancheng Ouyang, Zhifu Xie. Regularization of simultaneous binary collisions and solutions with singularity in the collinear four-body problem. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 909-932. doi: 10.3934/dcds.2009.24.909 [3] Davide L. Ferrario, Alessandro Portaluri. Dynamics of the the dihedral four-body problem. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 925-974. doi: 10.3934/dcdss.2013.6.925 [4] Duokui Yan, Tiancheng Ouyang, Zhifu Xie. Classification of periodic orbits in the planar equal-mass four-body problem. Conference Publications, 2015, 2015 (special) : 1115-1124. doi: 10.3934/proc.2015.1115 [5] Frederic Gabern, Àngel Jorba. A restricted four-body model for the dynamics near the Lagrangian points of the Sun-Jupiter system. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 143-182. doi: 10.3934/dcdsb.2001.1.143 [6] Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609 [7] Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299 [8] Ernesto A. Lacomba, Mario Medina. Oscillatory motions in the rectangular four body problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 557-587. doi: 10.3934/dcdss.2008.1.557 [9] Martha Alvarez, Joaquin Delgado, Jaume Llibre. On the spatial central configurations of the 5--body problem and their bifurcations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 505-518. doi: 10.3934/dcdss.2008.1.505 [10] Montserrat Corbera, Jaume Llibre. On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1049-1060. doi: 10.3934/dcds.2013.33.1049 [11] Elbaz I. Abouelmagd, Juan L. G. Guirao, Aatef Hobiny, Faris Alzahrani. Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1047-1054. doi: 10.3934/dcdss.2015.8.1047 [12] Allyson Oliveira, Hildeberto Cabral. On stacked central configurations of the planar coorbital satellites problem. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3715-3732. doi: 10.3934/dcds.2012.32.3715 [13] Hichem Chtioui, Hichem Hajaiej, Marwa Soula. The scalar curvature problem on four-dimensional manifolds. Communications on Pure and Applied Analysis, 2020, 19 (2) : 723-746. doi: 10.3934/cpaa.2020034 [14] Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 [15] Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153 [16] Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 [17] Edward Belbruno. Random walk in the three-body problem and applications. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519 [18] Mao Chen, Xiangyang Tang, Zhizhong Zeng, Sanya Liu. An efficient heuristic algorithm for two-dimensional rectangular packing problem with central rectangle. Journal of Industrial and Management Optimization, 2020, 16 (1) : 495-510. doi: 10.3934/jimo.2018164 [19] Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523 [20] Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

2020 Impact Factor: 1.392