April  2013, 33(4): 1231-1246. doi: 10.3934/dcds.2013.33.1231

Critical points of functionalized Lagrangians

1. 

Department of Mathematics, Michigan State University, East Lansing, MI, 48824

2. 

Nico Holding LLC, 222 W. Adams Street, Chicago, IL, 60606, United States

Received  September 2011 Revised  October 2011 Published  October 2012

We present a novel class of higher order energies motivated by the study of network formation in binary mixtures of functionalized polymers and solvent. For a broad class of Lagrangians, we introduce their functionalized form, which is a higher order energy balancing the square of the variational derivative against the original energy. We show that the functionalized energies have global minimizers over several natural spaces of admissible functions. The critical points of the functionalized Lagrangian contain those of the original Lagrangian, however we demonstrate that for a sufficient strength of the functionalization all the critical points of the original Lagrangian are saddle points of the functionalized Lagrangian, and the global minima is a new structure.
Citation: Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231
References:
[1]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258.   Google Scholar

[2]

P. Canham, Minimum energy of bending as a possible explanation of biconcave shape of human red blood cell,, J. Theor. Biol., 26 (1970), 61.  doi: 10.1016/S0022-5193(70)80032-7.  Google Scholar

[3]

E. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D. Smilgies, G. Toombes, M. Hillmyer, S. Ludwigs, U. Steiner and H. Snaith, A Bicontinuous double gyroid hybrid solar cell,, Nano Letters, 9 (2009), 2807.  doi: 10.1021/nl803174p.  Google Scholar

[4]

Qiang Du, Chun Liu, Rolf Ryham and Xiaoqiang Wang, A phase field formulation of the Willmore problem,, Nonlinearity, 18 (2005), 1249.   Google Scholar

[5]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (2000).   Google Scholar

[6]

N. Gavish, G. Hayrapetyan, K. Promislow and L. Yang, Curvature driven flow of bi-layer interfaces,, Physica D, 240 (2011), 675.  doi: 10.1016/j.physd.2010.11.016.  Google Scholar

[7]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphillic systems,, Phys. Rev. Lett., 65 (1990), 1116.  doi: 10.1103/PhysRevLett.65.1116.  Google Scholar

[8]

W. Helfrich, Elastic properties of lipid bilayers - theory and possible experiments,, Zeitshcrift fur naturforschung C, 28 (1973), 693.   Google Scholar

[9]

William Hsu and Timothy Gierke, Ion transport and clustering in Nafion perfluorinated membranes,, J. Membrane Science, 13 (1983), 307.  doi: 10.1016/S0376-7388(00)81563-X.  Google Scholar

[10]

Kun-Mu Lee, Chih-Yu Hsu, Wei-Hao Chiu, Meng-Chin Tsui, Yung-Liang Tung, Song-Yeu Tsai and Kuo-Chuan Ho, Dye-sensitized solar cells with mirco-porous TiO$_2$ electrode and gel polymer electrolytes prepared by in situ cross-link reaction,, Solar Energy Materials & Solar cells, 93 (2009), 2003.   Google Scholar

[11]

Roger Moser, A higher order asymptotic problem related to phase transition,, SIAM Journal Math. Anal., 37 (2005), 712.  doi: 10.1016/j.ijpharm.2004.11.015.  Google Scholar

[12]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational. Mech. Anal., 98 (1987), 123.   Google Scholar

[13]

J. Peet, A. Heeger and G. Bazan, "Plastic'' Solar cells: Self-assembly of bulk hetrojunction nanomaterials by spontaneous phase separation,, Accounts of Chemical Research, 42 (2009), 1700.  doi: 10.1016/j.ssc.2008.12.019.  Google Scholar

[14]

K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview,, SIAM Math. Analysis, 70 (2009), 369.   Google Scholar

[15]

Matthias Röger and Reiner Schätzle, On a modified conjecture of De Giorgi,, Math. Z., 254 (2006), 675.   Google Scholar

[16]

L. Rubatat, G. Gebel and O. Diat, Fibriallar structure of Nafion: Matching Fourier and real space studies of corresponding films and solutions,, Macromolecules, 2004 (): 7772.   Google Scholar

[17]

U. Schwarz and G. Gompper, Bicontinuous surfaces in self-assembled amphiphilic systems,, in, 600 (2002), 107.   Google Scholar

[18]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209.   Google Scholar

[19]

M. Struwe, "Variational Methods,", Springer-Verlag, (1990).   Google Scholar

show all references

References:
[1]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy,, J. Chem. Phys., 28 (1958), 258.   Google Scholar

[2]

P. Canham, Minimum energy of bending as a possible explanation of biconcave shape of human red blood cell,, J. Theor. Biol., 26 (1970), 61.  doi: 10.1016/S0022-5193(70)80032-7.  Google Scholar

[3]

E. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D. Smilgies, G. Toombes, M. Hillmyer, S. Ludwigs, U. Steiner and H. Snaith, A Bicontinuous double gyroid hybrid solar cell,, Nano Letters, 9 (2009), 2807.  doi: 10.1021/nl803174p.  Google Scholar

[4]

Qiang Du, Chun Liu, Rolf Ryham and Xiaoqiang Wang, A phase field formulation of the Willmore problem,, Nonlinearity, 18 (2005), 1249.   Google Scholar

[5]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (2000).   Google Scholar

[6]

N. Gavish, G. Hayrapetyan, K. Promislow and L. Yang, Curvature driven flow of bi-layer interfaces,, Physica D, 240 (2011), 675.  doi: 10.1016/j.physd.2010.11.016.  Google Scholar

[7]

G. Gompper and M. Schick, Correlation between structural and interfacial properties of amphillic systems,, Phys. Rev. Lett., 65 (1990), 1116.  doi: 10.1103/PhysRevLett.65.1116.  Google Scholar

[8]

W. Helfrich, Elastic properties of lipid bilayers - theory and possible experiments,, Zeitshcrift fur naturforschung C, 28 (1973), 693.   Google Scholar

[9]

William Hsu and Timothy Gierke, Ion transport and clustering in Nafion perfluorinated membranes,, J. Membrane Science, 13 (1983), 307.  doi: 10.1016/S0376-7388(00)81563-X.  Google Scholar

[10]

Kun-Mu Lee, Chih-Yu Hsu, Wei-Hao Chiu, Meng-Chin Tsui, Yung-Liang Tung, Song-Yeu Tsai and Kuo-Chuan Ho, Dye-sensitized solar cells with mirco-porous TiO$_2$ electrode and gel polymer electrolytes prepared by in situ cross-link reaction,, Solar Energy Materials & Solar cells, 93 (2009), 2003.   Google Scholar

[11]

Roger Moser, A higher order asymptotic problem related to phase transition,, SIAM Journal Math. Anal., 37 (2005), 712.  doi: 10.1016/j.ijpharm.2004.11.015.  Google Scholar

[12]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rational. Mech. Anal., 98 (1987), 123.   Google Scholar

[13]

J. Peet, A. Heeger and G. Bazan, "Plastic'' Solar cells: Self-assembly of bulk hetrojunction nanomaterials by spontaneous phase separation,, Accounts of Chemical Research, 42 (2009), 1700.  doi: 10.1016/j.ssc.2008.12.019.  Google Scholar

[14]

K. Promislow and B. Wetton, PEM fuel cells: A mathematical overview,, SIAM Math. Analysis, 70 (2009), 369.   Google Scholar

[15]

Matthias Röger and Reiner Schätzle, On a modified conjecture of De Giorgi,, Math. Z., 254 (2006), 675.   Google Scholar

[16]

L. Rubatat, G. Gebel and O. Diat, Fibriallar structure of Nafion: Matching Fourier and real space studies of corresponding films and solutions,, Macromolecules, 2004 (): 7772.   Google Scholar

[17]

U. Schwarz and G. Gompper, Bicontinuous surfaces in self-assembled amphiphilic systems,, in, 600 (2002), 107.   Google Scholar

[18]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209.   Google Scholar

[19]

M. Struwe, "Variational Methods,", Springer-Verlag, (1990).   Google Scholar

[1]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[2]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[3]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[4]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[5]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[7]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[8]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[9]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[10]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[13]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[14]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[15]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[16]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[17]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]