April  2013, 33(4): 1247-1273. doi: 10.3934/dcds.2013.33.1247

Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups

1. 

Faculdade de Matemática - Universidade Federal de Uberlândia, Campus Santa Mônica, Av. João Naves de Ávila - 2121 38.408-100, Uberlândia - MG, Brazil

2. 

Imecc - Unicamp, Departamento de Matemática, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino Vaz 13083-859, Campinas - SP, Brazil

Received  September 2011 Revised  January 2012 Published  October 2012

Let $Q\rightarrow X$ be a principal bundle having as structural group $G$ a reductive Lie group in the Harish-Chandra class that includes the case when $G$ is semi-simple with finite center. A semiflow $\phi _{k}$ of endomorphisms of $Q$ induces a semiflow $\psi _{k}$ on the associated bundle $\mathbb{E}=Q\times _{G}\mathbb{F}$, where $\mathbb{F}$ is the maximal flag bundle of $G$. The $A$-component of the Iwasawa decomposition $G=KAN$ yields an additive vector valued cocycle $\mathsf{a}\left( k,\xi \right) $, $\xi \in \mathbb{E}$, over $\psi _{k}$ with values in the Lie algebra $\mathfrak{a}$ of $A$. We prove the Multiplicative Ergodic Theorem of Oseledets for this cocycle: If $\nu $ is a probability measure invariant by the semiflow on $X$ then the $\mathfrak{a}$-Lyapunov exponent $\lambda \left( \xi \right) =\lim \frac{1}{k}\mathsf{a}\left( k,\xi \right) $ exists for every $\xi $ on the fibers above a set of full $\nu $-measure. The level sets of $\lambda \left( \cdot \right) $ on the fibers are described in algebraic terms. When $\phi _{k}$ is a flow the description of the level sets is sharpened. We relate the cocycle $\mathsf{a}\left( k,\xi \right) $ with the Lyapunov exponents of a linear flow on a vector bundle and other growth rates.
Citation: Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247
References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

L. Arnold, N. D. Cong and V. I. Oseledets, Jordan normal form for linear cocycles,, Random Oper. Stochastic Equations, 7 (1999), 303.   Google Scholar

[3]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkhäuser, (2000).  doi: 10.1007/978-1-4612-1350-5_3.  Google Scholar

[4]

J. J. Duistermat, J. A. C. Kolk and V. S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups,, Compositio Math., 49 (1983), 309.   Google Scholar

[5]

R. Feres, "Dynamical Systems and Semisimple Groups: An Introduction,", Cambridge University Press, (1998).  doi: 10.5840/ancientphil199818243.  Google Scholar

[6]

Y. Guivarch, L. Ji and J. C. Taylor, "Compactifications of Symmetric Spaces,", Progress in Mathematics, (1998).   Google Scholar

[7]

S. Helgason, "Groups and Geometric Analysis,", Academic Press, (1984).   Google Scholar

[8]

J. Hilgert and G. Ólafsson, "Causal Symmetric Spaces,", Geometry and Harmonic Analysis, 18 (1997).   Google Scholar

[9]

V. A. Kaimanovich, Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semisimple lie groups,, J. Soviet Math., 47 (1989), 2387.  doi: 10.1007/BF01840421.  Google Scholar

[10]

A. Karlsson and G. A. Margulis, A multiplicative ergodic theorem and nonpositively curved spaces,, Communications in Mathematical Physics, 208 (1999), 107.  doi: 10.1007/s002200050750.  Google Scholar

[11]

A. W. Knapp, "Lie Groups: Beyond an Introduction,", Second Edition, 140 (2004).   Google Scholar

[12]

G. Link, "Limit Sets of Discrete Groups Acting on Symmetric Spaces,", Ph.D thesis, (2002).   Google Scholar

[13]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", vol. I, (1963).   Google Scholar

[14]

M. S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem,, Israel J. Math., 32 (1979), 356.   Google Scholar

[15]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publ. Math. IHES, 50 (1979), 27.  doi: 10.1007/BF00587200.  Google Scholar

[16]

L. A. B. San Martin, Maximal semigroups in semi-simple lie groups,, Trans. Amer. Math. Soc., 353 (2001), 5165.   Google Scholar

[17]

L. A. B. San Martin, Nonexistence of invariant semigroups in affine symmetric spaces,, Math. Ann., 321 (2001), 587.  doi: 10.1016/S0039-6028(01)00812-3.  Google Scholar

[18]

L. A. B. San Martin and L. Seco, Morse and Lyapunov spectra and dynamics on flag bundles,, Ergodic Theory & Dynamical Systems, 30 (2010), 893.  doi: 10.1017/S0143385709000285.  Google Scholar

[19]

G. Warner, "Harmonic Analysis on Semi-simple Lie Groups I,", Springer-Verlag, (1972).  doi: 10.1007/978-3-642-50275-0.  Google Scholar

[20]

R.Zimmer, Ergodic theory and semisimple groups,, Monographs in Mathematics, 81 (1984).   Google Scholar

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

L. Arnold, N. D. Cong and V. I. Oseledets, Jordan normal form for linear cocycles,, Random Oper. Stochastic Equations, 7 (1999), 303.   Google Scholar

[3]

F. Colonius and W. Kliemann, "The Dynamics of Control,", Birkhäuser, (2000).  doi: 10.1007/978-1-4612-1350-5_3.  Google Scholar

[4]

J. J. Duistermat, J. A. C. Kolk and V. S. Varadarajan, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups,, Compositio Math., 49 (1983), 309.   Google Scholar

[5]

R. Feres, "Dynamical Systems and Semisimple Groups: An Introduction,", Cambridge University Press, (1998).  doi: 10.5840/ancientphil199818243.  Google Scholar

[6]

Y. Guivarch, L. Ji and J. C. Taylor, "Compactifications of Symmetric Spaces,", Progress in Mathematics, (1998).   Google Scholar

[7]

S. Helgason, "Groups and Geometric Analysis,", Academic Press, (1984).   Google Scholar

[8]

J. Hilgert and G. Ólafsson, "Causal Symmetric Spaces,", Geometry and Harmonic Analysis, 18 (1997).   Google Scholar

[9]

V. A. Kaimanovich, Lyapunov exponents, symmetric spaces and multiplicative ergodic theorem for semisimple lie groups,, J. Soviet Math., 47 (1989), 2387.  doi: 10.1007/BF01840421.  Google Scholar

[10]

A. Karlsson and G. A. Margulis, A multiplicative ergodic theorem and nonpositively curved spaces,, Communications in Mathematical Physics, 208 (1999), 107.  doi: 10.1007/s002200050750.  Google Scholar

[11]

A. W. Knapp, "Lie Groups: Beyond an Introduction,", Second Edition, 140 (2004).   Google Scholar

[12]

G. Link, "Limit Sets of Discrete Groups Acting on Symmetric Spaces,", Ph.D thesis, (2002).   Google Scholar

[13]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", vol. I, (1963).   Google Scholar

[14]

M. S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem,, Israel J. Math., 32 (1979), 356.   Google Scholar

[15]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publ. Math. IHES, 50 (1979), 27.  doi: 10.1007/BF00587200.  Google Scholar

[16]

L. A. B. San Martin, Maximal semigroups in semi-simple lie groups,, Trans. Amer. Math. Soc., 353 (2001), 5165.   Google Scholar

[17]

L. A. B. San Martin, Nonexistence of invariant semigroups in affine symmetric spaces,, Math. Ann., 321 (2001), 587.  doi: 10.1016/S0039-6028(01)00812-3.  Google Scholar

[18]

L. A. B. San Martin and L. Seco, Morse and Lyapunov spectra and dynamics on flag bundles,, Ergodic Theory & Dynamical Systems, 30 (2010), 893.  doi: 10.1017/S0143385709000285.  Google Scholar

[19]

G. Warner, "Harmonic Analysis on Semi-simple Lie Groups I,", Springer-Verlag, (1972).  doi: 10.1007/978-3-642-50275-0.  Google Scholar

[20]

R.Zimmer, Ergodic theory and semisimple groups,, Monographs in Mathematics, 81 (1984).   Google Scholar

[1]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[2]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[3]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[4]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[5]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[6]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[7]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[8]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[9]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]