April  2013, 33(4): 1293-1296. doi: 10.3934/dcds.2013.33.1293

A note on equivalent definitions of topological transitivity

1. 

Department of Mathematics and Statistics, La Trobe University, Plenty Road Bundoora 3086, Victoria, Australia, Australia

Received  October 2011 Revised  December 2011 Published  October 2012

We show that a well known lemma concerning conditions equivalent to topological transitivity is false when posed in a setting that is too general. We also explore some ways of remedying this problem.
Citation: John Banks, Brett Stanley. A note on equivalent definitions of topological transitivity. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1293-1296. doi: 10.3934/dcds.2013.33.1293
References:
[1]

J. Banks, Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems, 17 (1997), 505-529. doi: 10.1017/S0143385797069885.  Google Scholar

[2]

L. S. Block and W. A. Coppel, "Dynamics in One Dimension," Lecture Notes in Mathematics 1513, Springer Verlag, 1992.  Google Scholar

[3]

J. de Vries, "Elements of Topological Dynamics," Kluwer Academic Publishers, Dordrecht, 1993.  Google Scholar

[4]

S. Kolyada and L. Snoha, Some aspects of topological transitivity -A survey, in: L. Reich et al. (eds.), Proc. Europ. Conf. on Iteration Theory (Opava, Czech Republic, 1994), Grazer Math. Ber., 334 (1997), 3-35  Google Scholar

[5]

P. Walters, "An Introduction to Ergodic Theory," Springer-Verlag, New York, 1982.  Google Scholar

show all references

References:
[1]

J. Banks, Regular periodic decompositions for topologically transitive maps, Ergodic Theory Dynam. Systems, 17 (1997), 505-529. doi: 10.1017/S0143385797069885.  Google Scholar

[2]

L. S. Block and W. A. Coppel, "Dynamics in One Dimension," Lecture Notes in Mathematics 1513, Springer Verlag, 1992.  Google Scholar

[3]

J. de Vries, "Elements of Topological Dynamics," Kluwer Academic Publishers, Dordrecht, 1993.  Google Scholar

[4]

S. Kolyada and L. Snoha, Some aspects of topological transitivity -A survey, in: L. Reich et al. (eds.), Proc. Europ. Conf. on Iteration Theory (Opava, Czech Republic, 1994), Grazer Math. Ber., 334 (1997), 3-35  Google Scholar

[5]

P. Walters, "An Introduction to Ergodic Theory," Springer-Verlag, New York, 1982.  Google Scholar

[1]

Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic & Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025

[2]

Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043

[3]

Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115

[4]

Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059

[5]

Evariste Sanchez-Palencia, Jean-Pierre Françoise. Topological remarks and new examples of persistence of diversity in biological dynamics. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1775-1789. doi: 10.3934/dcdss.2019117

[6]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[7]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[8]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[9]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[10]

Luis Barreira, Claudia Valls. Topological conjugacies and behavior at infinity. Communications on Pure & Applied Analysis, 2014, 13 (2) : 687-701. doi: 10.3934/cpaa.2014.13.687

[11]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[12]

Yonghui Zhou, Jian Yu, Long Wang. Topological essentiality in infinite games. Journal of Industrial & Management Optimization, 2012, 8 (1) : 179-187. doi: 10.3934/jimo.2012.8.179

[13]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[14]

Christopher Oballe, Alan Cherne, Dave Boothe, Scott Kerick, Piotr J. Franaszczuk, Vasileios Maroulas. Bayesian topological signal processing. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021084

[15]

Magdalena Czubak, Robert L. Jerrard. Topological defects in the abelian Higgs model. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1933-1968. doi: 10.3934/dcds.2015.35.1933

[16]

David Jerison, Nikola Kamburov. Free boundaries subject to topological constraints. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7213-7248. doi: 10.3934/dcds.2019301

[17]

John Banks. Topological mapping properties defined by digraphs. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 83-92. doi: 10.3934/dcds.1999.5.83

[18]

Marcelo Sobottka. Topological quasi-group shifts. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77

[19]

Nikita Selinger. Topological characterization of canonical Thurston obstructions. Journal of Modern Dynamics, 2013, 7 (1) : 99-117. doi: 10.3934/jmd.2013.7.99

[20]

Rafael De La Llave, A. Windsor. An application of topological multiple recurrence to tiling. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 315-324. doi: 10.3934/dcdss.2009.2.315

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]