-
Previous Article
Dynamics of continued fractions and kneading sequences of unimodal maps
- DCDS Home
- This Issue
-
Next Article
A note on equivalent definitions of topological transitivity
Admissibility versus nonuniform exponential behavior for noninvertible cocycles
1. | Departamento de Matemática, Instituto Superior Técnico, UTL, 1049-001 Lisboa, Portugal |
2. | Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal |
References:
[1] |
L. Barreira and Ya. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory," University Lecture Series, 23, Amer. Math. Soc., 2002. |
[2] |
L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations," Lect. Notes in Math., 1926, Springer, 2008. |
[3] |
C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Mathematical Surveys and Monographs, 70, Amer. Math. Soc., 1999. |
[4] |
Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space," Translations of Mathematical Monographs, 43, Amer. Math. Soc., 1974. |
[5] |
N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235 (2006), 330-354.
doi: 10.1016/j.jfa.2005.11.002. |
[6] |
B. Levitan and V. Zhikov, "Almost Periodic Functions and Differential Equations," Cambridge University Press, 1982. |
[7] |
J. Massera and J. Schäffer, Linear differential equations and functional analysis. I, Ann. of Math., 67 (1958), 517-573.
doi: 10.2307/1969871. |
[8] |
J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces," Pure and Applied Mathematics, 21, Academic Press, 1966. |
[9] |
M. Megan, B. Sasu and A. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral Equations Operator Theory, 44 (2002), 71-78.
doi: 10.1007/BF01197861. |
[10] |
N. Minh and N. Huy, Characterizations of dichotomies of evolution equations on the half-line, J. Math. Anal. Appl., 261 (2001), 28-44.
doi: 10.1006/jmaa.2001.7450. |
[11] |
P. Ngoc and T. Naito, New characterizations of exponential dichotomy and exponential stability of linear difference equations, J. Difference Equ. Appl., 11 (2005), 909-918.
doi: 10.1080/00423110500211947. |
[12] |
O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728.
doi: 10.1007/BF01194662. |
[13] |
P. Preda and M. Megan, Nonuniform dichotomy of evolutionary processes in Banach spaces, Bull. Austral. Math. Soc., 27 (1983), 31-52.
doi: 10.1017/S0004972700011473. |
[14] |
P. Preda, A. Pogan and C. Preda, $(L^p,L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line, Integral Equations Operator Theory, 49 (2004), 405-418.
doi: 10.1007/s00020-002-1268-7. |
[15] |
P. Preda, A. Pogan and C. Preda, Schäffer spaces and uniform exponential stability of linear skew-product semiflows, J. Differential Equations, 212 (2005), 191-207.
doi: 10.1016/j.jde.2004.07.019. |
[16] |
P. Preda, A. Pogan and C. Preda, Schäffer spaces and exponential dichotomy for evolutionary processes, J. Differential Equations, 230 (2006), 378-391.
doi: 10.1016/j.jde.2006.02.004. |
[17] |
A. Sasu and B. Sasu, Discrete admissibility, $l^p$-spaces and exponential dichotomy on the real line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13 (2006), 551-561 |
[18] |
A. Sasu and B. Sasu, Exponential dichotomy and $(l^p,l^q)$-admissibility on the half-line, J. Math. Anal. Appl., 316 (2006), 397-408.
doi: 10.1016/j.jmaa.2005.04.047. |
[19] |
N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory, 32 (1998), 332-353.
doi: 10.1007/BF01203774. |
show all references
References:
[1] |
L. Barreira and Ya. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory," University Lecture Series, 23, Amer. Math. Soc., 2002. |
[2] |
L. Barreira and C. Valls, "Stability of Nonautonomous Differential Equations," Lect. Notes in Math., 1926, Springer, 2008. |
[3] |
C. Chicone and Yu. Latushkin, "Evolution Semigroups in Dynamical Systems and Differential Equations," Mathematical Surveys and Monographs, 70, Amer. Math. Soc., 1999. |
[4] |
Ju. Dalec$'$kiĭ and M. Kreĭn, "Stability of Solutions of Differential Equations in Banach Space," Translations of Mathematical Monographs, 43, Amer. Math. Soc., 1974. |
[5] |
N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235 (2006), 330-354.
doi: 10.1016/j.jfa.2005.11.002. |
[6] |
B. Levitan and V. Zhikov, "Almost Periodic Functions and Differential Equations," Cambridge University Press, 1982. |
[7] |
J. Massera and J. Schäffer, Linear differential equations and functional analysis. I, Ann. of Math., 67 (1958), 517-573.
doi: 10.2307/1969871. |
[8] |
J. Massera and J. Schäffer, "Linear Differential Equations and Function Spaces," Pure and Applied Mathematics, 21, Academic Press, 1966. |
[9] |
M. Megan, B. Sasu and A. Sasu, On nonuniform exponential dichotomy of evolution operators in Banach spaces, Integral Equations Operator Theory, 44 (2002), 71-78.
doi: 10.1007/BF01197861. |
[10] |
N. Minh and N. Huy, Characterizations of dichotomies of evolution equations on the half-line, J. Math. Anal. Appl., 261 (2001), 28-44.
doi: 10.1006/jmaa.2001.7450. |
[11] |
P. Ngoc and T. Naito, New characterizations of exponential dichotomy and exponential stability of linear difference equations, J. Difference Equ. Appl., 11 (2005), 909-918.
doi: 10.1080/00423110500211947. |
[12] |
O. Perron, Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32 (1930), 703-728.
doi: 10.1007/BF01194662. |
[13] |
P. Preda and M. Megan, Nonuniform dichotomy of evolutionary processes in Banach spaces, Bull. Austral. Math. Soc., 27 (1983), 31-52.
doi: 10.1017/S0004972700011473. |
[14] |
P. Preda, A. Pogan and C. Preda, $(L^p,L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line, Integral Equations Operator Theory, 49 (2004), 405-418.
doi: 10.1007/s00020-002-1268-7. |
[15] |
P. Preda, A. Pogan and C. Preda, Schäffer spaces and uniform exponential stability of linear skew-product semiflows, J. Differential Equations, 212 (2005), 191-207.
doi: 10.1016/j.jde.2004.07.019. |
[16] |
P. Preda, A. Pogan and C. Preda, Schäffer spaces and exponential dichotomy for evolutionary processes, J. Differential Equations, 230 (2006), 378-391.
doi: 10.1016/j.jde.2006.02.004. |
[17] |
A. Sasu and B. Sasu, Discrete admissibility, $l^p$-spaces and exponential dichotomy on the real line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 13 (2006), 551-561 |
[18] |
A. Sasu and B. Sasu, Exponential dichotomy and $(l^p,l^q)$-admissibility on the half-line, J. Math. Anal. Appl., 316 (2006), 397-408.
doi: 10.1016/j.jmaa.2005.04.047. |
[19] |
N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory, 32 (1998), 332-353.
doi: 10.1007/BF01203774. |
[1] |
Luis Barreira, Claudia Valls. Nonuniform exponential dichotomies and admissibility. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 39-53. doi: 10.3934/dcds.2011.30.39 |
[2] |
César M. Silva. Admissibility and generalized nonuniform dichotomies for discrete dynamics. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3419-3443. doi: 10.3934/cpaa.2021112 |
[3] |
Luis Barreira, Claudia Valls. Characterization of stable manifolds for nonuniform exponential dichotomies. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1025-1046. doi: 10.3934/dcds.2008.21.1025 |
[4] |
Davor Dragičević. Admissibility and polynomial dichotomies for evolution families. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1321-1336. doi: 10.3934/cpaa.2020064 |
[5] |
Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111 |
[6] |
Christian Pötzsche. Smooth roughness of exponential dichotomies, revisited. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 853-859. doi: 10.3934/dcdsb.2015.20.853 |
[7] |
Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219 |
[8] |
Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential trichotomy of dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2929-2962. doi: 10.3934/dcds.2014.34.2929 |
[9] |
Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383 |
[10] |
Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170 |
[11] |
Luis Barreira, Davor Dragičević, Claudia Valls. From one-sided dichotomies to two-sided dichotomies. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2817-2844. doi: 10.3934/dcds.2015.35.2817 |
[12] |
Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509 |
[13] |
Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure and Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861 |
[14] |
Jana Rodriguez Hertz. Genericity of nonuniform hyperbolicity in dimension 3. Journal of Modern Dynamics, 2012, 6 (1) : 121-138. doi: 10.3934/jmd.2012.6.121 |
[15] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
[16] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure and Applied Analysis, 2021, 20 (2) : 511-532. doi: 10.3934/cpaa.2020278 |
[17] |
Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 55-76. doi: 10.3934/dcds.2011.30.55 |
[18] |
António J.G. Bento, Nicolae Lupa, Mihail Megan, César M. Silva. Integral conditions for nonuniform $μ$-dichotomy on the half-line. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3063-3077. doi: 10.3934/dcdsb.2017163 |
[19] |
Luis Barreira, Claudia Valls. Center manifolds for nonuniform trichotomies and arbitrary growth rates. Communications on Pure and Applied Analysis, 2010, 9 (3) : 643-654. doi: 10.3934/cpaa.2010.9.643 |
[20] |
Hassan Emamirad, Arnaud Rougirel. A functional calculus approach for the rational approximation with nonuniform partitions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 955-972. doi: 10.3934/dcds.2008.22.955 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]