April  2013, 33(4): 1313-1332. doi: 10.3934/dcds.2013.33.1313

Dynamics of continued fractions and kneading sequences of unimodal maps

1. 

Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, I-56127, Italy, Italy

2. 

Dipartimento di Matematica e Informatica, Università di Camerino, via Madonna delle Carceri, I-62032 Camerino

3. 

Department of Mathematics, Harvard University, One Oxford Street Cambridge, MA 02138, United States

Received  September 2011 Revised  January 2012 Published  October 2012

In this paper we construct a correspondence between the parameter spaces of two families of one-dimensional dynamical systems, the $\alpha$-continued fraction transformations $T_\alpha$ and unimodal maps. This correspondence identifies bifurcation parameters in the two families, and allows one to transfer topological and metric properties from one setting to the other. As an application, we recover results about the real slice of the Mandelbrot set, and the set of univoque numbers.
Citation: Claudio Bonanno, Carlo Carminati, Stefano Isola, Giulio Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1313-1332. doi: 10.3934/dcds.2013.33.1313
References:
[1]

Acta Math., 195 (2005), 1-20. doi: 10.1007/BF02588048.  Google Scholar

[2]

Thèse d'État, Université Bordeaux I, 1983. Google Scholar

[3]

C. R. Acad. Sci. Paris Sér. I, Math., 296 (1983), 159-162.  Google Scholar

[4]

Acta Math. Hungar., 91 (2001), 325-332. doi: 10.1023/A:1010667918943.  Google Scholar

[5]

Amer. Math. Monthly, 107 (2000), 448-449.  Google Scholar

[6]

Coll. Math., 116 (2009), 165-189.  Google Scholar

[7]

Ergodic Theory Dynam. Systems, 32 (2012), 1249-1269. doi: 10.1017/S0143385711000447.  Google Scholar

[8]

Nonlinearity, 23 (2010), 2429-2456. doi: 10.1088/0951-7715/23/10/005.  Google Scholar

[9]

Theoret. Comput. Sci., 218 (1999), 3-12.  Google Scholar

[10]

Springer-Verlag, Berlin, Heidelberg, 1993.  Google Scholar

[11]

Acta Math. Hungar, 119, (2008), 57-62. doi: 10.1007/s10474-007-6252-x.  Google Scholar

[12]

in "Real and Complex Dynamical Systems (Hillerød, 1993)'', NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., 464, Kluwer, Dordrecht (1995), 65-87.  Google Scholar

[13]

Acta Math. Hungar, 58 (1991), 129-132. doi: 10.1109/LICS.1991.151636.  Google Scholar

[14]

Bull. Soc. Math. France, 118 (1990), 377-390.  Google Scholar

[15]

$2^{nd}$ edition, John Wiley and Sons, Chichester UK, 2003.  Google Scholar

[16]

Ann. of Math., 146 (1997), 1-52.  Google Scholar

[17]

J. Number Theory, 40 (1992), 336-358. doi: 10.1016/0022-314X(92)90006-B.  Google Scholar

[18]

Far East J. Dyn. Syst., 6 (2004), 79-96.  Google Scholar

[19]

J. Stat. Phys., 61 (1990), 263-291. doi: 10.1007/BF01013965.  Google Scholar

[20]

Amer. Math. Monthly, 105 (1998), 936-939.  Google Scholar

[21]

J. Number Theory, 122 (2007), 157-183.  Google Scholar

[22]

Nonlinearity, 25 (2012), 2207-2243. doi: 10.1088/0951-7715/25/8/2207.  Google Scholar

[23]

Discrete Contin. Dyn. Syst., 20 (2008), 673-711.  Google Scholar

[24]

Acta Math., 178 (1997), 185-247, 247-297. doi: 10.1007/BF02392694.  Google Scholar

[25]

Math. Annalen, 101 (1929), 342-366. Corrigendum, 103 (1930), 532.  Google Scholar

[26]

Ark. Mat., 25 (1987), 41-89. doi: 10.1007/BF02384436.  Google Scholar

[27]

in "Dynamical Systems (College Park, MD, 1986-87)'', Lecture Notes in Math., 1342, Springer, Berlin (1988), 465-563.  Google Scholar

[28]

C. G. Moreira, Geometric properties of the Markov and Lagrange spectra,, available from: , ().   Google Scholar

[29]

Tokyo J. Math., 4 (1981), 399-426. doi: 10.3836/tjm/1270215165.  Google Scholar

[30]

Nonlinearity, 21 (2008), 1207-1225. doi: 10.1088/0951-7715/21/6/003.  Google Scholar

[31]

Trans. Amer. Math. Soc., 53 (1943), 427-439.  Google Scholar

[32]

in "Complex Dynamics: Families and Friends'' (eds. D. Schleicher and N. Selinger), A K Peters, Wellesley, MA, (2009), 3-137. doi: 10.1016/j.phycom.2009.02.007.  Google Scholar

[33]

G. Tiozzo, The entropy of Nakada's $\alpha$-continued fractions: analytical results,, to appear on Ann. Sc. Norm. Super. Pisa Cl. Sci., ().   Google Scholar

[34]

Ergodic Theory Dynam. Systems, 23 (2003), 637-660.  Google Scholar

show all references

References:
[1]

Acta Math., 195 (2005), 1-20. doi: 10.1007/BF02588048.  Google Scholar

[2]

Thèse d'État, Université Bordeaux I, 1983. Google Scholar

[3]

C. R. Acad. Sci. Paris Sér. I, Math., 296 (1983), 159-162.  Google Scholar

[4]

Acta Math. Hungar., 91 (2001), 325-332. doi: 10.1023/A:1010667918943.  Google Scholar

[5]

Amer. Math. Monthly, 107 (2000), 448-449.  Google Scholar

[6]

Coll. Math., 116 (2009), 165-189.  Google Scholar

[7]

Ergodic Theory Dynam. Systems, 32 (2012), 1249-1269. doi: 10.1017/S0143385711000447.  Google Scholar

[8]

Nonlinearity, 23 (2010), 2429-2456. doi: 10.1088/0951-7715/23/10/005.  Google Scholar

[9]

Theoret. Comput. Sci., 218 (1999), 3-12.  Google Scholar

[10]

Springer-Verlag, Berlin, Heidelberg, 1993.  Google Scholar

[11]

Acta Math. Hungar, 119, (2008), 57-62. doi: 10.1007/s10474-007-6252-x.  Google Scholar

[12]

in "Real and Complex Dynamical Systems (Hillerød, 1993)'', NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., 464, Kluwer, Dordrecht (1995), 65-87.  Google Scholar

[13]

Acta Math. Hungar, 58 (1991), 129-132. doi: 10.1109/LICS.1991.151636.  Google Scholar

[14]

Bull. Soc. Math. France, 118 (1990), 377-390.  Google Scholar

[15]

$2^{nd}$ edition, John Wiley and Sons, Chichester UK, 2003.  Google Scholar

[16]

Ann. of Math., 146 (1997), 1-52.  Google Scholar

[17]

J. Number Theory, 40 (1992), 336-358. doi: 10.1016/0022-314X(92)90006-B.  Google Scholar

[18]

Far East J. Dyn. Syst., 6 (2004), 79-96.  Google Scholar

[19]

J. Stat. Phys., 61 (1990), 263-291. doi: 10.1007/BF01013965.  Google Scholar

[20]

Amer. Math. Monthly, 105 (1998), 936-939.  Google Scholar

[21]

J. Number Theory, 122 (2007), 157-183.  Google Scholar

[22]

Nonlinearity, 25 (2012), 2207-2243. doi: 10.1088/0951-7715/25/8/2207.  Google Scholar

[23]

Discrete Contin. Dyn. Syst., 20 (2008), 673-711.  Google Scholar

[24]

Acta Math., 178 (1997), 185-247, 247-297. doi: 10.1007/BF02392694.  Google Scholar

[25]

Math. Annalen, 101 (1929), 342-366. Corrigendum, 103 (1930), 532.  Google Scholar

[26]

Ark. Mat., 25 (1987), 41-89. doi: 10.1007/BF02384436.  Google Scholar

[27]

in "Dynamical Systems (College Park, MD, 1986-87)'', Lecture Notes in Math., 1342, Springer, Berlin (1988), 465-563.  Google Scholar

[28]

C. G. Moreira, Geometric properties of the Markov and Lagrange spectra,, available from: , ().   Google Scholar

[29]

Tokyo J. Math., 4 (1981), 399-426. doi: 10.3836/tjm/1270215165.  Google Scholar

[30]

Nonlinearity, 21 (2008), 1207-1225. doi: 10.1088/0951-7715/21/6/003.  Google Scholar

[31]

Trans. Amer. Math. Soc., 53 (1943), 427-439.  Google Scholar

[32]

in "Complex Dynamics: Families and Friends'' (eds. D. Schleicher and N. Selinger), A K Peters, Wellesley, MA, (2009), 3-137. doi: 10.1016/j.phycom.2009.02.007.  Google Scholar

[33]

G. Tiozzo, The entropy of Nakada's $\alpha$-continued fractions: analytical results,, to appear on Ann. Sc. Norm. Super. Pisa Cl. Sci., ().   Google Scholar

[34]

Ergodic Theory Dynam. Systems, 23 (2003), 637-660.  Google Scholar

[1]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[2]

Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021006

[3]

Zhigang Pan, Yiqiu Mao, Quan Wang, Yuchen Yang. Transitions and bifurcations of Darcy-Brinkman-Marangoni convection. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021106

[4]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[5]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[6]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[7]

Jiyu Zhong. Qualitative properties and bifurcations of a leaf-eating herbivores model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3381-3407. doi: 10.3934/dcdsb.2020236

[8]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[9]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[11]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[12]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[13]

Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021008

[14]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[15]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[16]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021076

[17]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[18]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (11)

[Back to Top]