April  2013, 33(4): 1333-1349. doi: 10.3934/dcds.2013.33.1333

Semigroup representations in holomorphic dynamics

1. 

Instituto de Matemáticas., Unidad Cuernavaca. UNAM, Av. Universidad s/n. Col. Lomas de Chamilpa, C. P. 62210, Cuernavaca, Morelos, Mexico

2. 

Instituto de Matemáticas, Unidad Cuernavaca. UNAM, Av. Universidad s/n. Col. Lomas de Chamilpa, C.P. 62210, Cuernavaca, Morelos

3. 

Mathematisches Institut, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany

Received  September 2011 Revised  April 2012 Published  October 2012

We use semigroup theory to describe the group of automorphisms of some semigroups of interest in holomorphic dynamical systems. We show, with some examples, that representation theory of semigroups is related to usual constructions in holomorphic dynamics. The main tool for our discussion is a theorem due to Schreier. We extend this theorem, and our results in semigroups, to the setting of correspondences and holomorphic correspondences.
Citation: Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333
References:
[1]

A. F. Beardon and T. W. Ng, On Ritt's factorization of polynomials,, J. London Math. Soc. (2), 62 (2000), 127.  doi: 10.1093/rpc/2000rpc587.  Google Scholar

[2]

C. Cabrera and P. Makienko, On dynamical Teichmüller spaces,, Conf. Geom and Dyn., 14 (2010), 256.  doi: 10.1090/S1088-4173-2010-00214-6.  Google Scholar

[3]

A. Douady, Systèmes dynamiques holomorphes,, Bourbaki seminar, 1982/83 (1983), 39.   Google Scholar

[4]

A. Douady and J. H. Hubbard, A proof of Thurston's topological characterization of rational functions,, Acta Math., 171 (1993), 263.  doi: 10.1007/BF02392534.  Google Scholar

[5]

A. Eremenko, On the characterization of a Riemann surface by its semigroup of endomorphisms,, Trans. Amer. Math. Soc., 338 (1993), 123.  doi: 10.2307/2154447.  Google Scholar

[6]

A. Hinkkanen, Functions conjugating entire functions to entire functions and semigroups of analytic endomorphisms,, Complex Variables and Elliptic Equations, 18 (1992), 149.  doi: 10.1080/17476939208814541.  Google Scholar

[7]

M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics,, J. Diff. Geom., 47 (1997), 17.   Google Scholar

[8]

R. Mañè, P. Sad and D. Sullivan, On the dynamics of rational maps,, Ann. Scien. Ec. Norm. Sup. Paris(4), 16 (1983), 193.   Google Scholar

[9]

K. D. Magill, Jr., A survey of semigroups of continous self maps,, Semigroup Forum, 11 (): 189.  doi: 10.1007/BF02195270.  Google Scholar

[10]

C. McMullen, "Complex Dynamics and Renormalization,", Annals of Mathematics Studies, (1994).   Google Scholar

[11]

______, "Renormalization and 3-Manifolds Which Fiber Over the Circle,", Annals of Mathematics Studies, (1996).   Google Scholar

[12]

J. Milnor, "Dynamics of One Complex Variable,", Friedr. Vieweg & Sohn, (1999).   Google Scholar

[13]

J. F. Ritt, Prime and composite polynomials,, Trans. Amer. Math. Soc., 23 (1922), 51.  doi: 10.1090/S0002-9947-1922-1501205-4.  Google Scholar

[14]

J. Schreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen,, Fund. Math., (1937), 261.   Google Scholar

show all references

References:
[1]

A. F. Beardon and T. W. Ng, On Ritt's factorization of polynomials,, J. London Math. Soc. (2), 62 (2000), 127.  doi: 10.1093/rpc/2000rpc587.  Google Scholar

[2]

C. Cabrera and P. Makienko, On dynamical Teichmüller spaces,, Conf. Geom and Dyn., 14 (2010), 256.  doi: 10.1090/S1088-4173-2010-00214-6.  Google Scholar

[3]

A. Douady, Systèmes dynamiques holomorphes,, Bourbaki seminar, 1982/83 (1983), 39.   Google Scholar

[4]

A. Douady and J. H. Hubbard, A proof of Thurston's topological characterization of rational functions,, Acta Math., 171 (1993), 263.  doi: 10.1007/BF02392534.  Google Scholar

[5]

A. Eremenko, On the characterization of a Riemann surface by its semigroup of endomorphisms,, Trans. Amer. Math. Soc., 338 (1993), 123.  doi: 10.2307/2154447.  Google Scholar

[6]

A. Hinkkanen, Functions conjugating entire functions to entire functions and semigroups of analytic endomorphisms,, Complex Variables and Elliptic Equations, 18 (1992), 149.  doi: 10.1080/17476939208814541.  Google Scholar

[7]

M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics,, J. Diff. Geom., 47 (1997), 17.   Google Scholar

[8]

R. Mañè, P. Sad and D. Sullivan, On the dynamics of rational maps,, Ann. Scien. Ec. Norm. Sup. Paris(4), 16 (1983), 193.   Google Scholar

[9]

K. D. Magill, Jr., A survey of semigroups of continous self maps,, Semigroup Forum, 11 (): 189.  doi: 10.1007/BF02195270.  Google Scholar

[10]

C. McMullen, "Complex Dynamics and Renormalization,", Annals of Mathematics Studies, (1994).   Google Scholar

[11]

______, "Renormalization and 3-Manifolds Which Fiber Over the Circle,", Annals of Mathematics Studies, (1996).   Google Scholar

[12]

J. Milnor, "Dynamics of One Complex Variable,", Friedr. Vieweg & Sohn, (1999).   Google Scholar

[13]

J. F. Ritt, Prime and composite polynomials,, Trans. Amer. Math. Soc., 23 (1922), 51.  doi: 10.1090/S0002-9947-1922-1501205-4.  Google Scholar

[14]

J. Schreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen,, Fund. Math., (1937), 261.   Google Scholar

[1]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[2]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[3]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[4]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[5]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[6]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[7]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[8]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[9]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[10]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[11]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[12]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]