-
Previous Article
Entropy of endomorphisms of Lie groups
- DCDS Home
- This Issue
-
Next Article
Dynamics of continued fractions and kneading sequences of unimodal maps
Semigroup representations in holomorphic dynamics
1. | Instituto de Matemáticas., Unidad Cuernavaca. UNAM, Av. Universidad s/n. Col. Lomas de Chamilpa, C. P. 62210, Cuernavaca, Morelos, Mexico |
2. | Instituto de Matemáticas, Unidad Cuernavaca. UNAM, Av. Universidad s/n. Col. Lomas de Chamilpa, C.P. 62210, Cuernavaca, Morelos |
3. | Mathematisches Institut, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany |
References:
[1] |
A. F. Beardon and T. W. Ng, On Ritt's factorization of polynomials,, J. London Math. Soc. (2), 62 (2000), 127.
doi: 10.1093/rpc/2000rpc587. |
[2] |
C. Cabrera and P. Makienko, On dynamical Teichmüller spaces,, Conf. Geom and Dyn., 14 (2010), 256.
doi: 10.1090/S1088-4173-2010-00214-6. |
[3] |
A. Douady, Systèmes dynamiques holomorphes,, Bourbaki seminar, 1982/83 (1983), 39.
|
[4] |
A. Douady and J. H. Hubbard, A proof of Thurston's topological characterization of rational functions,, Acta Math., 171 (1993), 263.
doi: 10.1007/BF02392534. |
[5] |
A. Eremenko, On the characterization of a Riemann surface by its semigroup of endomorphisms,, Trans. Amer. Math. Soc., 338 (1993), 123.
doi: 10.2307/2154447. |
[6] |
A. Hinkkanen, Functions conjugating entire functions to entire functions and semigroups of analytic endomorphisms,, Complex Variables and Elliptic Equations, 18 (1992), 149.
doi: 10.1080/17476939208814541. |
[7] |
M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics,, J. Diff. Geom., 47 (1997), 17.
|
[8] |
R. Mañè, P. Sad and D. Sullivan, On the dynamics of rational maps,, Ann. Scien. Ec. Norm. Sup. Paris(4), 16 (1983), 193.
|
[9] |
K. D. Magill, Jr., A survey of semigroups of continous self maps,, Semigroup Forum, 11 (): 189.
doi: 10.1007/BF02195270. |
[10] |
C. McMullen, "Complex Dynamics and Renormalization,", Annals of Mathematics Studies, (1994).
|
[11] |
______, "Renormalization and 3-Manifolds Which Fiber Over the Circle,", Annals of Mathematics Studies, (1996).
|
[12] |
J. Milnor, "Dynamics of One Complex Variable,", Friedr. Vieweg & Sohn, (1999).
|
[13] |
J. F. Ritt, Prime and composite polynomials,, Trans. Amer. Math. Soc., 23 (1922), 51.
doi: 10.1090/S0002-9947-1922-1501205-4. |
[14] |
J. Schreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen,, Fund. Math., (1937), 261. Google Scholar |
show all references
References:
[1] |
A. F. Beardon and T. W. Ng, On Ritt's factorization of polynomials,, J. London Math. Soc. (2), 62 (2000), 127.
doi: 10.1093/rpc/2000rpc587. |
[2] |
C. Cabrera and P. Makienko, On dynamical Teichmüller spaces,, Conf. Geom and Dyn., 14 (2010), 256.
doi: 10.1090/S1088-4173-2010-00214-6. |
[3] |
A. Douady, Systèmes dynamiques holomorphes,, Bourbaki seminar, 1982/83 (1983), 39.
|
[4] |
A. Douady and J. H. Hubbard, A proof of Thurston's topological characterization of rational functions,, Acta Math., 171 (1993), 263.
doi: 10.1007/BF02392534. |
[5] |
A. Eremenko, On the characterization of a Riemann surface by its semigroup of endomorphisms,, Trans. Amer. Math. Soc., 338 (1993), 123.
doi: 10.2307/2154447. |
[6] |
A. Hinkkanen, Functions conjugating entire functions to entire functions and semigroups of analytic endomorphisms,, Complex Variables and Elliptic Equations, 18 (1992), 149.
doi: 10.1080/17476939208814541. |
[7] |
M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics,, J. Diff. Geom., 47 (1997), 17.
|
[8] |
R. Mañè, P. Sad and D. Sullivan, On the dynamics of rational maps,, Ann. Scien. Ec. Norm. Sup. Paris(4), 16 (1983), 193.
|
[9] |
K. D. Magill, Jr., A survey of semigroups of continous self maps,, Semigroup Forum, 11 (): 189.
doi: 10.1007/BF02195270. |
[10] |
C. McMullen, "Complex Dynamics and Renormalization,", Annals of Mathematics Studies, (1994).
|
[11] |
______, "Renormalization and 3-Manifolds Which Fiber Over the Circle,", Annals of Mathematics Studies, (1996).
|
[12] |
J. Milnor, "Dynamics of One Complex Variable,", Friedr. Vieweg & Sohn, (1999).
|
[13] |
J. F. Ritt, Prime and composite polynomials,, Trans. Amer. Math. Soc., 23 (1922), 51.
doi: 10.1090/S0002-9947-1922-1501205-4. |
[14] |
J. Schreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen,, Fund. Math., (1937), 261. Google Scholar |
[1] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[2] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[3] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[4] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[5] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[6] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[7] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[8] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[9] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[10] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[11] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[12] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]