-
Previous Article
Attractors for differential equations with multiple variable delays
- DCDS Home
- This Issue
-
Next Article
Semigroup representations in holomorphic dynamics
Entropy of endomorphisms of Lie groups
1. | Departamento de Matemática, Universidade de Brasília, Campus Darcy Ribeiro, Cx. Postal 4481, Brasília-DF, 70.904-970, Brazil |
References:
[1] |
F. Blanchard, E. Glasner, S. Kolyada and A. Maas, On Li-Yorke pairs,, J. Reine Angew. Math., 547 (2002), 51.
|
[2] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Americ. Math Soc., 153 (1971), 401.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[3] |
T. Ferraiol, "Entropia e Ações de Grupos de Lie,", Master thesis, (2008). Google Scholar |
[4] |
T. Ferraiol, M. Patrão and L. Seco, Jordan decomposition and dynamics on flag manifolds,, Discrete Contin. Dyn. Syst. A, 26 (2010), 923.
doi: 10.3934/dcds.2010.26.923. |
[5] |
E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applications,, Isr. J. Math., 102 (1997), 13.
doi: 10.1007/BF02773793. |
[6] |
M. Handel and B. Kitchens, Metrics and entropy for non-compact spaces,, Isr. J. Math., 91 (1995), 253.
doi: 10.1007/BF02761650. |
[7] |
S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces,", Academic Press, (1978).
|
[8] |
A. W. Knapp, "Lie Groups Beyond an Introduction,", Progress in Mathematics, 140 (2002).
|
[9] |
M. Patrão, Entropy and its Variational Principle for Non-Compact Metric Spaces,, Ergodic Theory and Dynamical Systems, 30 (2010), 1529.
doi: 10.1017/S0143385709000674. |
[10] |
M. Patrão, L. Santos and L. Seco, A Note on the Jordan Decomposition,, Proyecciones Journal of Mathematics, 30 (2011), 123.
doi: 10.4067/S0716-09172011000100011. |
[11] |
Ya. G. Sinai, On the Notion of Entropy of a Dynamical System,, Doklady of Russian Academy of Sciences, 124 (1959), 768.
|
show all references
References:
[1] |
F. Blanchard, E. Glasner, S. Kolyada and A. Maas, On Li-Yorke pairs,, J. Reine Angew. Math., 547 (2002), 51.
|
[2] |
R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Americ. Math Soc., 153 (1971), 401.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[3] |
T. Ferraiol, "Entropia e Ações de Grupos de Lie,", Master thesis, (2008). Google Scholar |
[4] |
T. Ferraiol, M. Patrão and L. Seco, Jordan decomposition and dynamics on flag manifolds,, Discrete Contin. Dyn. Syst. A, 26 (2010), 923.
doi: 10.3934/dcds.2010.26.923. |
[5] |
E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applications,, Isr. J. Math., 102 (1997), 13.
doi: 10.1007/BF02773793. |
[6] |
M. Handel and B. Kitchens, Metrics and entropy for non-compact spaces,, Isr. J. Math., 91 (1995), 253.
doi: 10.1007/BF02761650. |
[7] |
S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces,", Academic Press, (1978).
|
[8] |
A. W. Knapp, "Lie Groups Beyond an Introduction,", Progress in Mathematics, 140 (2002).
|
[9] |
M. Patrão, Entropy and its Variational Principle for Non-Compact Metric Spaces,, Ergodic Theory and Dynamical Systems, 30 (2010), 1529.
doi: 10.1017/S0143385709000674. |
[10] |
M. Patrão, L. Santos and L. Seco, A Note on the Jordan Decomposition,, Proyecciones Journal of Mathematics, 30 (2011), 123.
doi: 10.4067/S0716-09172011000100011. |
[11] |
Ya. G. Sinai, On the Notion of Entropy of a Dynamical System,, Doklady of Russian Academy of Sciences, 124 (1959), 768.
|
[1] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[2] |
Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021 doi: 10.3934/fods.2021005 |
[3] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[4] |
Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491 |
[5] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[6] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[7] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[8] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]