April  2013, 33(4): 1351-1363. doi: 10.3934/dcds.2013.33.1351

Entropy of endomorphisms of Lie groups

1. 

Departamento de Matemática, Universidade de Brasília, Campus Darcy Ribeiro, Cx. Postal 4481, Brasília-DF, 70.904-970, Brazil

Received  June 2011 Revised  August 2012 Published  October 2012

We show, when $G$ is a nilpotent or reductive Lie group, that the entropy of any surjective endomorphism coincides with the entropy of its restriction to the toral component of the center of $G$. In particular, if $G$ is a semi-simple Lie group, the entropy of any surjective endomorphism always vanishes. Since every compact group is reductive, the formula for the entropy of a endomorphism of a compact group reduces to the formula for the entropy of an endomorphism of a torus. We also characterize the recurrent set of conjugations of linear semi-simple Lie groups.
Citation: André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351
References:
[1]

F. Blanchard, E. Glasner, S. Kolyada and A. Maas, On Li-Yorke pairs,, J. Reine Angew. Math., 547 (2002), 51.   Google Scholar

[2]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Americ. Math Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[3]

T. Ferraiol, "Entropia e Ações de Grupos de Lie,", Master thesis, (2008).   Google Scholar

[4]

T. Ferraiol, M. Patrão and L. Seco, Jordan decomposition and dynamics on flag manifolds,, Discrete Contin. Dyn. Syst. A, 26 (2010), 923.  doi: 10.3934/dcds.2010.26.923.  Google Scholar

[5]

E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applications,, Isr. J. Math., 102 (1997), 13.  doi: 10.1007/BF02773793.  Google Scholar

[6]

M. Handel and B. Kitchens, Metrics and entropy for non-compact spaces,, Isr. J. Math., 91 (1995), 253.  doi: 10.1007/BF02761650.  Google Scholar

[7]

S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces,", Academic Press, (1978).   Google Scholar

[8]

A. W. Knapp, "Lie Groups Beyond an Introduction,", Progress in Mathematics, 140 (2002).   Google Scholar

[9]

M. Patrão, Entropy and its Variational Principle for Non-Compact Metric Spaces,, Ergodic Theory and Dynamical Systems, 30 (2010), 1529.  doi: 10.1017/S0143385709000674.  Google Scholar

[10]

M. Patrão, L. Santos and L. Seco, A Note on the Jordan Decomposition,, Proyecciones Journal of Mathematics, 30 (2011), 123.  doi: 10.4067/S0716-09172011000100011.  Google Scholar

[11]

Ya. G. Sinai, On the Notion of Entropy of a Dynamical System,, Doklady of Russian Academy of Sciences, 124 (1959), 768.   Google Scholar

show all references

References:
[1]

F. Blanchard, E. Glasner, S. Kolyada and A. Maas, On Li-Yorke pairs,, J. Reine Angew. Math., 547 (2002), 51.   Google Scholar

[2]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Americ. Math Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[3]

T. Ferraiol, "Entropia e Ações de Grupos de Lie,", Master thesis, (2008).   Google Scholar

[4]

T. Ferraiol, M. Patrão and L. Seco, Jordan decomposition and dynamics on flag manifolds,, Discrete Contin. Dyn. Syst. A, 26 (2010), 923.  doi: 10.3934/dcds.2010.26.923.  Google Scholar

[5]

E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applications,, Isr. J. Math., 102 (1997), 13.  doi: 10.1007/BF02773793.  Google Scholar

[6]

M. Handel and B. Kitchens, Metrics and entropy for non-compact spaces,, Isr. J. Math., 91 (1995), 253.  doi: 10.1007/BF02761650.  Google Scholar

[7]

S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces,", Academic Press, (1978).   Google Scholar

[8]

A. W. Knapp, "Lie Groups Beyond an Introduction,", Progress in Mathematics, 140 (2002).   Google Scholar

[9]

M. Patrão, Entropy and its Variational Principle for Non-Compact Metric Spaces,, Ergodic Theory and Dynamical Systems, 30 (2010), 1529.  doi: 10.1017/S0143385709000674.  Google Scholar

[10]

M. Patrão, L. Santos and L. Seco, A Note on the Jordan Decomposition,, Proyecciones Journal of Mathematics, 30 (2011), 123.  doi: 10.4067/S0716-09172011000100011.  Google Scholar

[11]

Ya. G. Sinai, On the Notion of Entropy of a Dynamical System,, Doklady of Russian Academy of Sciences, 124 (1959), 768.   Google Scholar

[1]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[2]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[3]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[4]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[5]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[6]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[7]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[8]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]