April  2013, 33(4): 1365-1374. doi: 10.3934/dcds.2013.33.1365

Attractors for differential equations with multiple variable delays

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Received  September 2011 Revised  November 2011 Published  October 2012

We establish some results on the existence of pullback attractors for non--autonomous delay differential equations with multiple delays. In particular, we generalise some recent works on the existence of pullback attractors for delay differential equations.
Citation: Tomás Caraballo, Gábor Kiss. Attractors for differential equations with multiple variable delays. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1365-1374. doi: 10.3934/dcds.2013.33.1365
References:
[1]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.   Google Scholar

[2]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9.   Google Scholar

[3]

Tomás Caraballo, José A. Langa and James C. Robinson, Attractors for differential equations with variable delays,, J. Math. Anal. Appl., 260 (2001), 421.   Google Scholar

[4]

Huabin Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays,, Statist. Probab. Lett., 80 (2010), 50.   Google Scholar

[5]

Hans Crauel and Franco Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.   Google Scholar

[6]

Jack K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[7]

Jack K. Hale and Sjoerd M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", volume 99 of Applied Mathematical Sciences. Springer-Verlag, (1993).   Google Scholar

[8]

Gábor Kiss and Bernd Krauskopf, Stability implications of delay distribution for first-order and second-order systems,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 327.   Google Scholar

[9]

Gábor Kiss and Bernd Krauskopf, Stabilizing effect of delay distribution for a class of second-order systems without instantaneous feedback,, Dynamical Systems: An International Journal, 26 (2011), 85.   Google Scholar

[10]

Gábor Kiss and Jean-Philippe Lessard, Computational fixed point theory for differential delay equations with multiple time lags,, J. Differential Equations, 252 (2012), 3093.   Google Scholar

[11]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems,, Stoch. Dyn., 3 (2003), 101.   Google Scholar

[12]

Tibor Krisztin, Global dynamics of delay differential equations,, Periodica Mathematica Hungarica, 56 (2008), 83.   Google Scholar

[13]

Tibor Krisztin, Hans-Otto Walther and Jianhong Wu, "Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback,", volume 11 of Fields Institute Monographs. American Mathematical Society, (1999).   Google Scholar

[14]

Michal Křížek, Numerical experience with the finite speed of gravitational interaction,, Math. Comput. Simulation, 50 (1999), 237.   Google Scholar

[15]

Yang Kuang, "Delay Differential Equations with Applications in Population Dynamics,", volume 191 of Mathematics in Science and Engineering. Academic Press Inc., (1993).   Google Scholar

[16]

Pedro Marín-Rubio and José Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956.   Google Scholar

[17]

Roger D. Nussbaum, Differential-delay equations with two time lags,, Mem. Amer. Math. Soc., 16 (1978).   Google Scholar

[18]

Roger D. Nussbaum, Functional differential equations,, in, 2 (2002), 461.   Google Scholar

[19]

Martin Rasmussen, "Attractivity and Bifurcation for Nonautonomous Dynamical Systems,", volume 1907 of Lecture Notes in Mathematics. Springer, (1907).   Google Scholar

[20]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in, (1992), 185.   Google Scholar

[21]

George R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory,, Trans. Amer. Math. Soc., 127 (1967), 241.   Google Scholar

[22]

George R. Sell, Nonautonomous differential equations and topological dynamics. II. Limiting equations,, Trans. Amer. Math. Soc., 127 (1967), 263.   Google Scholar

[23]

H. O. Walther, Dynamics of delay differential equations,, in, 205 (2006), 411.   Google Scholar

show all references

References:
[1]

T. Caraballo, G. Lukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems,, Nonlinear Anal., 64 (2006), 484.   Google Scholar

[2]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9.   Google Scholar

[3]

Tomás Caraballo, José A. Langa and James C. Robinson, Attractors for differential equations with variable delays,, J. Math. Anal. Appl., 260 (2001), 421.   Google Scholar

[4]

Huabin Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays,, Statist. Probab. Lett., 80 (2010), 50.   Google Scholar

[5]

Hans Crauel and Franco Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.   Google Scholar

[6]

Jack K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, 25 (1988).   Google Scholar

[7]

Jack K. Hale and Sjoerd M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", volume 99 of Applied Mathematical Sciences. Springer-Verlag, (1993).   Google Scholar

[8]

Gábor Kiss and Bernd Krauskopf, Stability implications of delay distribution for first-order and second-order systems,, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 327.   Google Scholar

[9]

Gábor Kiss and Bernd Krauskopf, Stabilizing effect of delay distribution for a class of second-order systems without instantaneous feedback,, Dynamical Systems: An International Journal, 26 (2011), 85.   Google Scholar

[10]

Gábor Kiss and Jean-Philippe Lessard, Computational fixed point theory for differential delay equations with multiple time lags,, J. Differential Equations, 252 (2012), 3093.   Google Scholar

[11]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems,, Stoch. Dyn., 3 (2003), 101.   Google Scholar

[12]

Tibor Krisztin, Global dynamics of delay differential equations,, Periodica Mathematica Hungarica, 56 (2008), 83.   Google Scholar

[13]

Tibor Krisztin, Hans-Otto Walther and Jianhong Wu, "Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback,", volume 11 of Fields Institute Monographs. American Mathematical Society, (1999).   Google Scholar

[14]

Michal Křížek, Numerical experience with the finite speed of gravitational interaction,, Math. Comput. Simulation, 50 (1999), 237.   Google Scholar

[15]

Yang Kuang, "Delay Differential Equations with Applications in Population Dynamics,", volume 191 of Mathematics in Science and Engineering. Academic Press Inc., (1993).   Google Scholar

[16]

Pedro Marín-Rubio and José Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956.   Google Scholar

[17]

Roger D. Nussbaum, Differential-delay equations with two time lags,, Mem. Amer. Math. Soc., 16 (1978).   Google Scholar

[18]

Roger D. Nussbaum, Functional differential equations,, in, 2 (2002), 461.   Google Scholar

[19]

Martin Rasmussen, "Attractivity and Bifurcation for Nonautonomous Dynamical Systems,", volume 1907 of Lecture Notes in Mathematics. Springer, (1907).   Google Scholar

[20]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in, (1992), 185.   Google Scholar

[21]

George R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic theory,, Trans. Amer. Math. Soc., 127 (1967), 241.   Google Scholar

[22]

George R. Sell, Nonautonomous differential equations and topological dynamics. II. Limiting equations,, Trans. Amer. Math. Soc., 127 (1967), 263.   Google Scholar

[23]

H. O. Walther, Dynamics of delay differential equations,, in, 205 (2006), 411.   Google Scholar

[1]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[2]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[5]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[6]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[7]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[8]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[9]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[10]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[11]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[12]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[13]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[14]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[15]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[16]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[17]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[18]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[19]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[20]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]