April  2013, 33(4): 1375-1388. doi: 10.3934/dcds.2013.33.1375

Observable optimal state points of subadditive potentials

1. 

Instituto de Matemática y Estadística Rafael Laguardia, Universidad de la República, Av. Herrera y Reissig 565, C.P.11300, Montevideo, Uruguay

2. 

Department of Mathematics, Soochow University, Suzhou 215006, Jiangsu

Received  October 2011 Revised  June 2012 Published  October 2012

For a sequence of subadditive potentials, a method of choosing state points with negative growth rates for an ergodic dynamical system was given in [5]. This paper first generalizes this result to the non-ergodic dynamics, and then proves that under some mild additional hypothesis, one can choose points with negative growth rates from a positive Lebesgue measure set, even if the system does not preserve any measure that is absolutely continuous with respect to Lebesgue measure.
Citation: Eleonora Catsigeras, Yun Zhao. Observable optimal state points of subadditive potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1375-1388. doi: 10.3934/dcds.2013.33.1375
References:
[1]

Y. Cao, On growth rates of sub-additive functions for semi-flows: determined and random cases,, J. Diff. Eqns, 231 (2006), 1.  doi: 10.1016/j.jde.2006.08.016.  Google Scholar

[2]

E. Catsigeras and H. Enrich, SRB-like measures for $C^0$ dynamics,, Bull. Polish Acad. Sci. Math., 59 (2011), 151.  doi: 10.4064/ba59-2-5.  Google Scholar

[3]

E. Catsigeras, Milnor-like attractors,, preprint, ().   Google Scholar

[4]

X. Dai, Y. Huang and M. Xiao, Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities,, Automatica, 47 (2011), 1512.  doi: 10.1016/j.automatica.2011.02.034.  Google Scholar

[5]

X. Dai, Optimal state points of the subadditive ergodic theorem,, Nonlinearity, 24 (2011), 1565.  doi: 10.1088/0951-7715/24/5/009.  Google Scholar

[6]

T. Golenishcheva-Kutuzova and V. Kleptsyn, Convergence of the Krylov-Bogolyubov procedure in Bowan's example,, (Russian) Mat. Zametki, 82 (2007), 678.   Google Scholar

[7]

A. Katok and B. Hasselblatt, "An Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications,", volume 54, (1995).   Google Scholar

[8]

J. F. C. Kingman, Subadditive ergodic theory,, Ann. Probab., 1 (1973), 883.   Google Scholar

[9]

M. Misiurewicz, Ergodic natural measures,, in, (2005), 1.   Google Scholar

[10]

S. J. Schreiber, On growth rates of subadditive functions for semi-flows,, J. Diff. Eqns, 148 (1998), 334.  doi: 10.1006/jdeq.1998.3471.  Google Scholar

[11]

K. Sigmund, Generic properties of invariant measures for axiom A-diffeomorphisms,, Inventiones Math., 11 (1970), 99.  doi: 10.1007/BF01404606.  Google Scholar

[12]

K. Sigmund, On the distribution of periodic points for $\beta-$shifts,, Monatsh. Math, 82 (1976), 247.  doi: 10.1007/BF01526329.  Google Scholar

[13]

R. Sturman, and J. Stark, Semi-uniform ergodic theorems and applications to forced systems,, Nonlinearity, 13 (2000), 113.   Google Scholar

[14]

Y. Takahashi, Entropy Functional (free energy) for Dynamical Systems and their Random Perturbations,, in, 32 (1982), 437.   Google Scholar

[15]

F. Takens, Heteroclinic attractors: time averages and moduli of topological conjugacy,, Bol. Soc. Brasil. Math., 25 (1994), 107.  doi: 10.1007/BF01232938.  Google Scholar

[16]

P. Walters, "An Introduction to Ergodic Theory,", GTM 79, (1982).   Google Scholar

show all references

References:
[1]

Y. Cao, On growth rates of sub-additive functions for semi-flows: determined and random cases,, J. Diff. Eqns, 231 (2006), 1.  doi: 10.1016/j.jde.2006.08.016.  Google Scholar

[2]

E. Catsigeras and H. Enrich, SRB-like measures for $C^0$ dynamics,, Bull. Polish Acad. Sci. Math., 59 (2011), 151.  doi: 10.4064/ba59-2-5.  Google Scholar

[3]

E. Catsigeras, Milnor-like attractors,, preprint, ().   Google Scholar

[4]

X. Dai, Y. Huang and M. Xiao, Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities,, Automatica, 47 (2011), 1512.  doi: 10.1016/j.automatica.2011.02.034.  Google Scholar

[5]

X. Dai, Optimal state points of the subadditive ergodic theorem,, Nonlinearity, 24 (2011), 1565.  doi: 10.1088/0951-7715/24/5/009.  Google Scholar

[6]

T. Golenishcheva-Kutuzova and V. Kleptsyn, Convergence of the Krylov-Bogolyubov procedure in Bowan's example,, (Russian) Mat. Zametki, 82 (2007), 678.   Google Scholar

[7]

A. Katok and B. Hasselblatt, "An Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications,", volume 54, (1995).   Google Scholar

[8]

J. F. C. Kingman, Subadditive ergodic theory,, Ann. Probab., 1 (1973), 883.   Google Scholar

[9]

M. Misiurewicz, Ergodic natural measures,, in, (2005), 1.   Google Scholar

[10]

S. J. Schreiber, On growth rates of subadditive functions for semi-flows,, J. Diff. Eqns, 148 (1998), 334.  doi: 10.1006/jdeq.1998.3471.  Google Scholar

[11]

K. Sigmund, Generic properties of invariant measures for axiom A-diffeomorphisms,, Inventiones Math., 11 (1970), 99.  doi: 10.1007/BF01404606.  Google Scholar

[12]

K. Sigmund, On the distribution of periodic points for $\beta-$shifts,, Monatsh. Math, 82 (1976), 247.  doi: 10.1007/BF01526329.  Google Scholar

[13]

R. Sturman, and J. Stark, Semi-uniform ergodic theorems and applications to forced systems,, Nonlinearity, 13 (2000), 113.   Google Scholar

[14]

Y. Takahashi, Entropy Functional (free energy) for Dynamical Systems and their Random Perturbations,, in, 32 (1982), 437.   Google Scholar

[15]

F. Takens, Heteroclinic attractors: time averages and moduli of topological conjugacy,, Bol. Soc. Brasil. Math., 25 (1994), 107.  doi: 10.1007/BF01232938.  Google Scholar

[16]

P. Walters, "An Introduction to Ergodic Theory,", GTM 79, (1982).   Google Scholar

[1]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[2]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[3]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[4]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[5]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[6]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[7]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[8]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[9]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[10]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[11]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[12]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[13]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[14]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[15]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[16]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[17]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[18]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[19]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[20]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]