-
Previous Article
Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds
- DCDS Home
- This Issue
-
Next Article
Observable optimal state points of subadditive potentials
Global well-posedness of critical nonlinear Schrödinger equations below $L^2$
1. | Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756 |
2. | Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea |
3. | Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan |
References:
[1] |
C. Ahn and Y. Cho, Lorentz space extension of Strichartz estimate,, Proc. Amer. Math. Soc., 133 (2005), 3497.
|
[2] |
L. Bergé, Soliton stability versus collapse,, Phys. Rev. E., 62 (2000), 3071.
|
[3] |
A. Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities,, Annales de l'IHP., 6 (2005), 1.
|
[4] |
N. L. Carothers, "A Short Course on Banach Space Theory,", London Mathematical Society Student Texts No. 64, (2005).
|
[5] |
T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics 10, (2003).
|
[6] |
M. Chae, Y. Cho and S. Lee, Mixed norm estimates of Schrodinger waves and their applications,, Commun. Partial Differential Equations, 35 (2010), 906.
|
[7] |
Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., (). Google Scholar |
[8] |
Y. Cho, S. Lee and T. Ozawa, On Hartree equations with derivatives,, Nonlinear Analysis TMA, 74 (2011), 2098.
|
[9] |
Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations,, RIMS Kokyuroku Bessatsu, B22 (2010), 145.
|
[10] |
Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, Commun. Contem. Math., 11 (2009), 355.
|
[11] |
Y. Cho, T. Ozawa, H. Sasaki and Y. Shim, Remarks on the semirelativistic Hartree equations,, DCDS-A, 23 (2009), 1273.
|
[12] |
M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Func. Anal., 179 (2001), 409.
|
[13] |
J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation in 2d,, Int. Math. Res. Not. 23 (2007), (2007).
|
[14] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$,, Comm. Pure Appl. Math., 57 (2004), 987.
|
[15] |
D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications,, Forum Math., 23 (2011), 181.
|
[16] |
J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$,, Comm. Math. Phys., 151 (1993), 619.
doi: 10.1080/15332969.1993.9985061. |
[17] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.
doi: 10.1016/0022-1236(87)90044-9. |
[18] |
Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, in preprint, (). Google Scholar |
[19] |
N. Hayashi and T. Ozawa, Smoothing effect for Schrödinger equations,, J. Fuctional. Anal., 85 (1989), 307.
|
[20] |
I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2} - Ze^2/r$,, Commun. Math. Physics, 53 (1977), 285.
|
[21] |
K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity,, Funkcial. Ekvac., 51 (2008), 135.
|
[22] |
J. Kato, M. Nakamura and T. Ozawa, A generalization of the weighted Strichartz estimates for wave equations and an application to self-similar solutions,, Comm. Pure Appl. Math., 60 (2007), 164.
doi: 10.1002/cpa.20133. |
[23] |
M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.
doi: 10.1353/ajm.1998.0039. |
[24] |
S. Machihara, M. Nakamura, K. Nakanashi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Func. Anal., 219 (2005), 1.
doi: 10.1016/j.jfa.2004.07.005. |
[25] |
F. Merle, Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u - k(x)|u|^{4/N}u \text{ in } \mathbbR^n$,, Ann. Inst. H. Poincaré Phys. Théor, 64 (1996), 33.
|
[26] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Func. Anal., 253 (2007), 605.
doi: 10.1016/j.jfa.2007.09.008. |
[27] |
_______, The Cauchy problem of the hartree equation,, J. Partial Diff. Eqs., 21 (2008), 22.
|
[28] |
_______, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, J. Math. Pure Appl., 91 (2009), 49.
doi: 10.1016/j.matpur.2008.09.003. |
[29] |
_______, Global well-posedness and scattering for the defocusing $H^{1/2}$-subcritical Hartree equation in $R^d$,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1831.
|
[30] |
_______, Global Well-Posedness and Scattering for the Energy-Critical, Defocusing Hartree Equation in $\mathbbR^{1+n}$,, Commun. Partial Differential Equations, 36 (2011), 729.
|
[31] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. II,, Ann. Henri Poincaré, 3 (2002), 503.
|
[32] |
M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations in the critical case,, Math. Ann., 335 (2006), 645.
doi: 10.1007/s00208-006-0757-4. |
[33] |
T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation,, Commun. Partial Differential Equations, 25 (2000), 1471.
|
[34] |
_______, "Nonlinear Dispersive Equations,", Local and global analysis, (2006).
|
[35] |
I. Towers and B. A. Malomed, Stable, $(2 + 1)$dimensional solutions in a layered medium with sign-alternating Kerr nonlinearity,, J. Opt. Soc. Am. B, 19 (2002), 537.
|
[36] |
Y. Tsutsumi, $L^2$-solutions for noninear Schrödinger equations and noninear groups,, Funkcial. Ekvac., 30 (1987), 115.
|
[37] |
K. Yosida, "Functional Analysis,", Springer, (1965).
|
show all references
References:
[1] |
C. Ahn and Y. Cho, Lorentz space extension of Strichartz estimate,, Proc. Amer. Math. Soc., 133 (2005), 3497.
|
[2] |
L. Bergé, Soliton stability versus collapse,, Phys. Rev. E., 62 (2000), 3071.
|
[3] |
A. Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities,, Annales de l'IHP., 6 (2005), 1.
|
[4] |
N. L. Carothers, "A Short Course on Banach Space Theory,", London Mathematical Society Student Texts No. 64, (2005).
|
[5] |
T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics 10, (2003).
|
[6] |
M. Chae, Y. Cho and S. Lee, Mixed norm estimates of Schrodinger waves and their applications,, Commun. Partial Differential Equations, 35 (2010), 906.
|
[7] |
Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., (). Google Scholar |
[8] |
Y. Cho, S. Lee and T. Ozawa, On Hartree equations with derivatives,, Nonlinear Analysis TMA, 74 (2011), 2098.
|
[9] |
Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations,, RIMS Kokyuroku Bessatsu, B22 (2010), 145.
|
[10] |
Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, Commun. Contem. Math., 11 (2009), 355.
|
[11] |
Y. Cho, T. Ozawa, H. Sasaki and Y. Shim, Remarks on the semirelativistic Hartree equations,, DCDS-A, 23 (2009), 1273.
|
[12] |
M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Func. Anal., 179 (2001), 409.
|
[13] |
J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation in 2d,, Int. Math. Res. Not. 23 (2007), (2007).
|
[14] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$,, Comm. Pure Appl. Math., 57 (2004), 987.
|
[15] |
D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications,, Forum Math., 23 (2011), 181.
|
[16] |
J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$,, Comm. Math. Phys., 151 (1993), 619.
doi: 10.1080/15332969.1993.9985061. |
[17] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.
doi: 10.1016/0022-1236(87)90044-9. |
[18] |
Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, in preprint, (). Google Scholar |
[19] |
N. Hayashi and T. Ozawa, Smoothing effect for Schrödinger equations,, J. Fuctional. Anal., 85 (1989), 307.
|
[20] |
I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2} - Ze^2/r$,, Commun. Math. Physics, 53 (1977), 285.
|
[21] |
K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity,, Funkcial. Ekvac., 51 (2008), 135.
|
[22] |
J. Kato, M. Nakamura and T. Ozawa, A generalization of the weighted Strichartz estimates for wave equations and an application to self-similar solutions,, Comm. Pure Appl. Math., 60 (2007), 164.
doi: 10.1002/cpa.20133. |
[23] |
M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.
doi: 10.1353/ajm.1998.0039. |
[24] |
S. Machihara, M. Nakamura, K. Nakanashi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Func. Anal., 219 (2005), 1.
doi: 10.1016/j.jfa.2004.07.005. |
[25] |
F. Merle, Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u - k(x)|u|^{4/N}u \text{ in } \mathbbR^n$,, Ann. Inst. H. Poincaré Phys. Théor, 64 (1996), 33.
|
[26] |
C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Func. Anal., 253 (2007), 605.
doi: 10.1016/j.jfa.2007.09.008. |
[27] |
_______, The Cauchy problem of the hartree equation,, J. Partial Diff. Eqs., 21 (2008), 22.
|
[28] |
_______, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, J. Math. Pure Appl., 91 (2009), 49.
doi: 10.1016/j.matpur.2008.09.003. |
[29] |
_______, Global well-posedness and scattering for the defocusing $H^{1/2}$-subcritical Hartree equation in $R^d$,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1831.
|
[30] |
_______, Global Well-Posedness and Scattering for the Energy-Critical, Defocusing Hartree Equation in $\mathbbR^{1+n}$,, Commun. Partial Differential Equations, 36 (2011), 729.
|
[31] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. II,, Ann. Henri Poincaré, 3 (2002), 503.
|
[32] |
M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations in the critical case,, Math. Ann., 335 (2006), 645.
doi: 10.1007/s00208-006-0757-4. |
[33] |
T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation,, Commun. Partial Differential Equations, 25 (2000), 1471.
|
[34] |
_______, "Nonlinear Dispersive Equations,", Local and global analysis, (2006).
|
[35] |
I. Towers and B. A. Malomed, Stable, $(2 + 1)$dimensional solutions in a layered medium with sign-alternating Kerr nonlinearity,, J. Opt. Soc. Am. B, 19 (2002), 537.
|
[36] |
Y. Tsutsumi, $L^2$-solutions for noninear Schrödinger equations and noninear groups,, Funkcial. Ekvac., 30 (1987), 115.
|
[37] |
K. Yosida, "Functional Analysis,", Springer, (1965).
|
[1] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[2] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[3] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[4] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[5] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[6] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[7] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[8] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[9] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[10] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[11] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[12] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[13] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[14] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[15] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[16] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[17] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[18] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[19] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[20] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]