April  2013, 33(4): 1389-1405. doi: 10.3934/dcds.2013.33.1389

Global well-posedness of critical nonlinear Schrödinger equations below $L^2$

1. 

Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756

2. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea

3. 

Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

Received  May 2011 Revised  August 2012 Published  October 2012

The global well-posedness on the Cauchy problem of nonlinear Schrödinger equations (NLS) is studied for a class of critical nonlinearity below $L^2$ in small data setting. We consider Hartree type (HNLS) and inhomogeneous power type NLS (PNLS). Since the critical Sobolev index $s_c$ is negative, it is rather difficult to analyze the nonlinear term. To overcome the difficulty we combine weighted Strichartz estimates in polar coordinates with new Duhamel estimates involving angular regularity.
Citation: Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389
References:
[1]

C. Ahn and Y. Cho, Lorentz space extension of Strichartz estimate,, Proc. Amer. Math. Soc., 133 (2005), 3497.   Google Scholar

[2]

L. Bergé, Soliton stability versus collapse,, Phys. Rev. E., 62 (2000), 3071.   Google Scholar

[3]

A. Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities,, Annales de l'IHP., 6 (2005), 1.   Google Scholar

[4]

N. L. Carothers, "A Short Course on Banach Space Theory,", London Mathematical Society Student Texts No. 64, (2005).   Google Scholar

[5]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics 10, (2003).   Google Scholar

[6]

M. Chae, Y. Cho and S. Lee, Mixed norm estimates of Schrodinger waves and their applications,, Commun. Partial Differential Equations, 35 (2010), 906.   Google Scholar

[7]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., ().   Google Scholar

[8]

Y. Cho, S. Lee and T. Ozawa, On Hartree equations with derivatives,, Nonlinear Analysis TMA, 74 (2011), 2098.   Google Scholar

[9]

Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations,, RIMS Kokyuroku Bessatsu, B22 (2010), 145.   Google Scholar

[10]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, Commun. Contem. Math., 11 (2009), 355.   Google Scholar

[11]

Y. Cho, T. Ozawa, H. Sasaki and Y. Shim, Remarks on the semirelativistic Hartree equations,, DCDS-A, 23 (2009), 1273.   Google Scholar

[12]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Func. Anal., 179 (2001), 409.   Google Scholar

[13]

J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation in 2d,, Int. Math. Res. Not. 23 (2007), (2007).   Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$,, Comm. Pure Appl. Math., 57 (2004), 987.   Google Scholar

[15]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications,, Forum Math., 23 (2011), 181.   Google Scholar

[16]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$,, Comm. Math. Phys., 151 (1993), 619.  doi: 10.1080/15332969.1993.9985061.  Google Scholar

[17]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, in preprint, ().   Google Scholar

[19]

N. Hayashi and T. Ozawa, Smoothing effect for Schrödinger equations,, J. Fuctional. Anal., 85 (1989), 307.   Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2} - Ze^2/r$,, Commun. Math. Physics, 53 (1977), 285.   Google Scholar

[21]

K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity,, Funkcial. Ekvac., 51 (2008), 135.   Google Scholar

[22]

J. Kato, M. Nakamura and T. Ozawa, A generalization of the weighted Strichartz estimates for wave equations and an application to self-similar solutions,, Comm. Pure Appl. Math., 60 (2007), 164.  doi: 10.1002/cpa.20133.  Google Scholar

[23]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[24]

S. Machihara, M. Nakamura, K. Nakanashi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Func. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[25]

F. Merle, Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u - k(x)|u|^{4/N}u \text{ in } \mathbbR^n$,, Ann. Inst. H. Poincaré Phys. Théor, 64 (1996), 33.   Google Scholar

[26]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Func. Anal., 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[27]

_______, The Cauchy problem of the hartree equation,, J. Partial Diff. Eqs., 21 (2008), 22.   Google Scholar

[28]

_______, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, J. Math. Pure Appl., 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[29]

_______, Global well-posedness and scattering for the defocusing $H^{1/2}$-subcritical Hartree equation in $R^d$,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1831.   Google Scholar

[30]

_______, Global Well-Posedness and Scattering for the Energy-Critical, Defocusing Hartree Equation in $\mathbbR^{1+n}$,, Commun. Partial Differential Equations, 36 (2011), 729.   Google Scholar

[31]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. II,, Ann. Henri Poincaré, 3 (2002), 503.   Google Scholar

[32]

M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations in the critical case,, Math. Ann., 335 (2006), 645.  doi: 10.1007/s00208-006-0757-4.  Google Scholar

[33]

T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation,, Commun. Partial Differential Equations, 25 (2000), 1471.   Google Scholar

[34]

_______, "Nonlinear Dispersive Equations,", Local and global analysis, (2006).   Google Scholar

[35]

I. Towers and B. A. Malomed, Stable, $(2 + 1)$dimensional solutions in a layered medium with sign-alternating Kerr nonlinearity,, J. Opt. Soc. Am. B, 19 (2002), 537.   Google Scholar

[36]

Y. Tsutsumi, $L^2$-solutions for noninear Schrödinger equations and noninear groups,, Funkcial. Ekvac., 30 (1987), 115.   Google Scholar

[37]

K. Yosida, "Functional Analysis,", Springer, (1965).   Google Scholar

show all references

References:
[1]

C. Ahn and Y. Cho, Lorentz space extension of Strichartz estimate,, Proc. Amer. Math. Soc., 133 (2005), 3497.   Google Scholar

[2]

L. Bergé, Soliton stability versus collapse,, Phys. Rev. E., 62 (2000), 3071.   Google Scholar

[3]

A. Bouard and R. Fukuizumi, Stability of standing waves for nonlinear Schrodinger equations with inhomogeneous nonlinearities,, Annales de l'IHP., 6 (2005), 1.   Google Scholar

[4]

N. L. Carothers, "A Short Course on Banach Space Theory,", London Mathematical Society Student Texts No. 64, (2005).   Google Scholar

[5]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics 10, (2003).   Google Scholar

[6]

M. Chae, Y. Cho and S. Lee, Mixed norm estimates of Schrodinger waves and their applications,, Commun. Partial Differential Equations, 35 (2010), 906.   Google Scholar

[7]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., ().   Google Scholar

[8]

Y. Cho, S. Lee and T. Ozawa, On Hartree equations with derivatives,, Nonlinear Analysis TMA, 74 (2011), 2098.   Google Scholar

[9]

Y. Cho and K. Nakanishi, On the global existence of semirelativistic Hartree equations,, RIMS Kokyuroku Bessatsu, B22 (2010), 145.   Google Scholar

[10]

Y. Cho and T. Ozawa, Sobolev inequalities with symmetry,, Commun. Contem. Math., 11 (2009), 355.   Google Scholar

[11]

Y. Cho, T. Ozawa, H. Sasaki and Y. Shim, Remarks on the semirelativistic Hartree equations,, DCDS-A, 23 (2009), 1273.   Google Scholar

[12]

M. Christ and A. Kiselev, Maximal functions associated to filtrations,, J. Func. Anal., 179 (2001), 409.   Google Scholar

[13]

J. Colliander, M. Grillakis and N. Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation in 2d,, Int. Math. Res. Not. 23 (2007), (2007).   Google Scholar

[14]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $R^3$,, Comm. Pure Appl. Math., 57 (2004), 987.   Google Scholar

[15]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications,, Forum Math., 23 (2011), 181.   Google Scholar

[16]

J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$,, Comm. Math. Phys., 151 (1993), 619.  doi: 10.1080/15332969.1993.9985061.  Google Scholar

[17]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[18]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations,, in preprint, ().   Google Scholar

[19]

N. Hayashi and T. Ozawa, Smoothing effect for Schrödinger equations,, J. Fuctional. Anal., 85 (1989), 307.   Google Scholar

[20]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2} - Ze^2/r$,, Commun. Math. Physics, 53 (1977), 285.   Google Scholar

[21]

K. Hidano, Nonlinear Schrödinger equations with radially symmetric data of critical regularity,, Funkcial. Ekvac., 51 (2008), 135.   Google Scholar

[22]

J. Kato, M. Nakamura and T. Ozawa, A generalization of the weighted Strichartz estimates for wave equations and an application to self-similar solutions,, Comm. Pure Appl. Math., 60 (2007), 164.  doi: 10.1002/cpa.20133.  Google Scholar

[23]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955.  doi: 10.1353/ajm.1998.0039.  Google Scholar

[24]

S. Machihara, M. Nakamura, K. Nakanashi and T. Ozawa, Endpoint Strichartz estimates and global solutions for the nonlinear Dirac equation,, J. Func. Anal., 219 (2005), 1.  doi: 10.1016/j.jfa.2004.07.005.  Google Scholar

[25]

F. Merle, Nonexistence of minimal blow-up solutions of equations $iu_t=-\Delta u - k(x)|u|^{4/N}u \text{ in } \mathbbR^n$,, Ann. Inst. H. Poincaré Phys. Théor, 64 (1996), 33.   Google Scholar

[26]

C. Miao, G. Xu and L. Zhao, Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data,, J. Func. Anal., 253 (2007), 605.  doi: 10.1016/j.jfa.2007.09.008.  Google Scholar

[27]

_______, The Cauchy problem of the hartree equation,, J. Partial Diff. Eqs., 21 (2008), 22.   Google Scholar

[28]

_______, Global well-posedness and scattering for the mass-critical Hartree equation with radial data,, J. Math. Pure Appl., 91 (2009), 49.  doi: 10.1016/j.matpur.2008.09.003.  Google Scholar

[29]

_______, Global well-posedness and scattering for the defocusing $H^{1/2}$-subcritical Hartree equation in $R^d$,, Ann. I. H. Poincaré Anal. Non Linéaire, 26 (2009), 1831.   Google Scholar

[30]

_______, Global Well-Posedness and Scattering for the Energy-Critical, Defocusing Hartree Equation in $\mathbbR^{1+n}$,, Commun. Partial Differential Equations, 36 (2011), 729.   Google Scholar

[31]

K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. II,, Ann. Henri Poincaré, 3 (2002), 503.   Google Scholar

[32]

M. Ruzhansky and M. Sugimoto, A smoothing property of Schrödinger equations in the critical case,, Math. Ann., 335 (2006), 645.  doi: 10.1007/s00208-006-0757-4.  Google Scholar

[33]

T. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation,, Commun. Partial Differential Equations, 25 (2000), 1471.   Google Scholar

[34]

_______, "Nonlinear Dispersive Equations,", Local and global analysis, (2006).   Google Scholar

[35]

I. Towers and B. A. Malomed, Stable, $(2 + 1)$dimensional solutions in a layered medium with sign-alternating Kerr nonlinearity,, J. Opt. Soc. Am. B, 19 (2002), 537.   Google Scholar

[36]

Y. Tsutsumi, $L^2$-solutions for noninear Schrödinger equations and noninear groups,, Funkcial. Ekvac., 30 (1987), 115.   Google Scholar

[37]

K. Yosida, "Functional Analysis,", Springer, (1965).   Google Scholar

[1]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[2]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[3]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[4]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[5]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[6]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[7]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[8]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[9]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[10]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[11]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[12]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[13]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[14]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[15]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[16]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[17]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[18]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[19]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[20]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]